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Abstract 

 
The use of simulation to evaluate energy-efficient operations, commissioning problems, and demand-
response (DR) strategies offers important insights into building operations. This paper describes a step-
by-step procedure for using measured end-use energy data from a campus building to calibrate a 
simulation model developed in EnergyPlus. This process included identification of key input parameters 
for reducing uncertainties in the model. The building geometry and internal thermal zones were modeled 
to match the actual heating ventilation and air conditioning (HVAC) zoning for each individual variable 
air-volume (VAV) zone. We evaluated most key building and HVAC system components, including 
space loads (actual occupancy number, lighting and plug loads), HVAC air-side components (VAV 
terminals, supply and return fans) and water-side components (chillers, pumps, and cooling towers). 
Comparison of the pre- and post-calibration model shows that the calibration process greatly improves the 
model’s accuracy for each end use. We propose an automated model calibration procedure that links the 
model to a real-time data monitoring system, allowing the model to be updated any time. The approach 
enables the automated data feed from sMAP into the EnergyPlus model to create realistic schedules of 
space loads (occupancy, lighting and plug), performance curves of fans, chillers and cooling towers. We 
also field-tested DR control strategies to evaluate the model’s performance in predicting dynamic 
response effects. Finally, this paper describes application of the calibrated model to analyze control 
systems and DR strategies with the goal of reducing peak demand. We compare end-use data from 
modeled and actual DR events.  
 
Keywords: Model calibration; Automated model calibration; Demand response; DR strategies; Demand 
reduction; CO2 concentrations 
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1 Introduction 
 
The engineering, controls, and buildings energy research community is developing a number of building 
energy optimization and advanced control concepts to reduce energy use and enable demand-response 
(DR) capabilities in buildings. To accurately model the effect of optimal control strategies, a detailed 
simulation model is needed that produces highly accurate results for each of the building’s mechanical 
system components. The objective of this study is to demonstrate a new approach to develop and 
automating calibration of a model that can be used to evaluate the effect of various DR control strategies 
on peak demand reduction. The calibrated simulation model can be implemented in building energy 
management systems (BEMs) to assist building operators in predicting the effects of various control 
strategies. 
 
For modelers, an advantage of a building simulation physical model is that it enables them to evaluate 
various design strategies, energy conversation measures (ECMs), and building system operational modes 
and to choose an optimal operational scheme for achieving a given target, such as reducing demand or 
maximizing energy efficiency. Calibration of such a model is critical; the model must closely 
approximate the actual building being studied to ensure that costly mistakes are avoided. A number of 
studies demonstrate that simulation models provide valuable support for conceptual and integrated system 
design, enabling designers to evaluate new architectural concepts and the impacts of different types of 
building façades; daylighting, solar shading, passive cooling, and integrated control strategies; and other 
design elements. However, when building energy simulation moves from the design phase to the 
operational phase, there are many uncertainties in models’ ability to accurately reflect actual building 
performance, especially on a large scale. As reported in a study of Energy Performance of Leadership in 
Energy Efficiency and Design (LEED) for New Construction Buildings (Turner and Frankel, 2008), 
discrepancies between simulated and measured energy use intensity show an acceptably close match 
between simulated and measured values for only a small number of buildings. 
 
Empirical validation methods have traditionally been used to evaluate the accuracy of models for 
simulating the energy intensity of existing buildings, to identify model uncertainties, and to calibrate 
input variables by comparing them to measured values. Empirical validation has been demonstrated in 
many field studies (Pan et al., 2008; Yin et al., 2010; Raftery et.al, 2011; Yin et al., 2012; Wang et.al, 
2013; O’Neill et.al, 2013). Among the milestones in model calibration was the development of a 
systematic method using a “base load analysis approach” (Yoon et al., 2003), which uses a combination 
of monthly utility billing data and sub-metered data to calibrate a building energy performance model. A 
case study of this approach showed that it reliably and accurately simulated monthly and annual building 
energy requirements. Another key study by Reddy et al. (2007) proposed a general methodology for 
calibrating detailed building energy simulation programs based on performance data and applied this 
methodology to three case-study office buildings. In that study, building system loads were characterized 
as “weather dependent” (HVAC system loads) and “weather independent” (e.g., lighting and plug loads). 
Pan et al. (2008) calibrated a simulation model in a high-rise commercial building using a step-by-step 
method based on the approach proposed in American Society of Heating, Refrigerating, and Air 
Conditioning Engineers (ASHRAE) Guideline 14-2002. In 1994, Norford et al. presented a common-
sense procedure for calibrating a DOE-2 computer model of a commercial building, identifying the major 
building loads, including lighting and equipment. New eta al. (2012) introduced an “Autotune” 
methodology for calibrating building energy models by using a suite of machine-learning algorithms, 
parameter sensitivity analysis and sensor data. Finally, O’Neill and Eisenhower (2013) proposed a 
systematic, automated way to calibrate a building energy model. Their optimization-based approach 
leveraged the analysis of parametric uncertainty with parametric simulations minimizing the error 
between the simulated and measured data.  
 



 

Table 1 compares different types of model calibration methods in terms of their applications, advantages, 
and disadvantages.  

Table 1: Comparison of different model calibration methods 

Model calibration 
method Application Advantages Disadvantages 

Monitoring-based Forward model; data-
driven model 

• Detailed physical 
parameters for each 
component 

• Valid and credible 
• Large-scale model 

with calibration 
possible for sub-level 
system or component 

• Accurate  

• Expensive and time 
consuming 

• Lack of monitoring 
data 

• Large number of 
parameters for each 
component 

Optimization-based Forward model; data-
driven model 

• Inexpensive 
• Automatic calibration 

process possible 
• Many or few input 

parameters 
• Very accurate 

• A lot of computing 
time possibly 
required to minimize 
error 

• Not necessarily 
realistic 

Regression model-based 
(ASHRAE Inverse 
Modeling Toolkit) 

Data-driven model 
• Fast and inexpensive 
• Few input parameters 
• Very accurate 

• Lack of flexibility  
• Mostly used for 

baseline model 
development 

 
A key question is whether large-scale simulations have low predictive value in existing buildings. The 
answer is no, but intense calibration is needed to sufficiently reduce model uncertainties in order to 
achieve high predictive value in large-scale, highly complex simulations. For simulating building energy 
in these situations, a good solution is to break the model calibration problem down into smaller, sub-level 
systems and manageable segments. Calibrating each smaller segment of the building improves the 
model’s overall predictive value. Typically, a building’s energy usage is composed of lighting, plug, and 
HVAC system loads. Lighting and plug loads are assumed to be weather-independent variables even 
though lighting power consumption is influenced by daylighting. This portion of load can be measured by 
sub-metering on each floor of a building. HVAC power usage is driven by a number of factors, including 
weather, internal loads (occupant, light, and plug), HVAC equipment specifications, and system 
configurations and control schemes. As more and more building information becomes available, a critical 
problem is enabling the simple and efficient transmission of building energy data to the simulation model.  
 
Another challenge for building simulation models is to predict buildings’ behavior under dynamic 
conditions such as DR events or to evaluate the effects of energy-saving strategies such as peak-demand 
reduction.  Several past studies have looked at modeling these types of dynamic control strategies. Rabl et 
al. (1991) studied the application of DR simulation models in commercial buildings, developing a data-
driven based dynamic model to simulate the effect of different thermostat control strategies for reducing 
peak demand. Morris et al. (1994) investigated two optimal dynamic building control strategies in a 
representative room in a large office building; experiments showed as much as 40% reduction in peak 
cooling load from this approach.  
 
Several studies have demonstrated building control strategies for reducing peak load that are applicable to 
our objective of using the calibrated simulation model to model peak-load reduction approaches. Keeney 
et al. (1997) developed a building control strategy and tested it in a large office building, finding that pre-
cooling could limit peak cooling loads to 75% of cooling capacity. Xu et al. (2004) demonstrated the 



 

potential for reducing peak electrical demand in moderate-size commercial buildings by modifying 
HVAC system control. Field tests of this approach showed that chiller power was reduced by 80-100% (1 
- 2.3 watts per square foot [W/ft2]) during the peak period without thermal comfort complaints from 
occupants. Xu et al. (2005) conducted a series of field tests in two commercial buildings in Northern 
California to investigate the effects of various pre-cooling and demand-shed strategies. These tests 
showed the potential to reduce cooling load 25-50% during peak hours and demonstrated the importance 
of discharge strategies to avoid rebounds. Braun (2003) presented an overview of research related to the 
use of building thermal mass for shifting and reducing peak cooling loads in commercial buildings and 
provided specific results obtained through simulations, laboratory tests, and field studies.  
 
Peak-load reduction strategy modeling studies include Yin et al. (2010); this study developed and 
calibrated simulation models of 11 commercial buildings for evaluating the effect of different thermostat 
control strategies. There have been a number of other simulations, laboratory and field tests, and pilot 
studies on DR in buildings (Motegi, 2007; Piette et al., 2007). 
 
This paper adds to the body of research on model calibration and application to dynamic building 
scenarios such as DR events by developing an EnergyPlus model for a campus office building and 
calibrating it with actual measured data from the building’s energy management system. To calibrate the 
model’s foundation, we modeled the building geometry and internal thermal zones to match the actual 
HVAC zoning for each individual variable air-volume (VAV) zone. Following an evidence-based 
methodology, the model was developed from (1) as-built architectural, mechanical design, and control 
drawings; (2) actual building operation and behavior (occupancy, lighting and plug loads, HVAC system 
operations); and (3) detailed mechanical equipment specifications and actual operational performance 
(part-load operational curves of chiller, pump and fan, etc.). We propose an automated calibration 
procedure that links the model to the building’s real-time data monitoring system so that the model can be 
updated with measured data at any time, especially when there is any change in building system 
operations or when energy-efficiency measures are implemented. We used the calibrated model to 
evaluate the effect of different DR control strategies for peak-load reduction. 
 
2 Model development 
 
Building simulations often start with building load calculations using outdoor weather conditions and the 
building’s physical description. The building heating/cooling load is then transferred within the model to 
the system load to calculate the performance of air-side system components (e.g., supply and return fans, 
VAV terminals). Finally, the system load is used to calculate the plant load (e.g., chillers, cooling towers, 
pumps and auxiliary equipment). Generally, the goal of model calibration is to eliminate uncertainties in 
model inputs. There are limited assumptions and uncertainties in model of the physical building, 
including building geometry and envelope, but there are many uncertainties in model inputs for other 
components, such as weather data, space loads, HVAC system component actual performance, and 
building operational schedules. Overall, the model’s accuracy depends on how much detailed information 
is available from the building. The first step in developing a model includes the collection of model input 
data – weather, building physical details, space loads (occupant, lighting and plug loads), mechanical 
systems (equipment specifications and relevant control sequences), energy usage, and utility bills.  Yin 
et.al (2010) describe a general procedure for model development and calibration. 
 
 
2.1 Building description 
 
We performed a case study of an existing office building on campus that was built in 2008. The building 
is 141,000 square feet, with classrooms, offices, laboratories and a 149-seat auditorium. It houses offices 
and a nano-fabrication lab. Several issues require special attention in this facility. First, the silicon-wafer 



 

fabrication laboratory with a large clean room occupies several floors of the building. The chilled water 
loop of the building is shared with this laboratory. The building operator requested that no services be 
changed in the laboratory part of the building under any circumstances. In addition, the building has two 
600-ton chillers: a steam-powered absorption chiller and an electric centrifugal chiller. The centrifugal 
chiller operates during the winter for higher plant efficiency, and the absorption chiller is used during the 
summer to take advantage of redundant steam on campus. Thus, at any given time, only one of the 
chillers is operating; even so, each chiller is grossly over-sized for the building loads, so it short-cycles 
excessively.   
 
The building monitoring system has two main substations, a dozen sub-meters, and thousands of sensors. 
A comprehensive whole-building sub-metering system was installed to monitor power usage of process 
equipment, lighting and plugs on each floor, air-handling units (AHUs), the electrical chiller, and all other 
equipment components. 
 
2.2 Model development 
 
The initial EnergyPlus model created for the case study building followed the standard practices for 
creating advanced energy models; the physical structure was modeled, including appropriate mechanical 
system modules and standard ASHRAE assumptions for weather, ventilation, lighting, plug loads, and 
other attributes.  Detailed modules that correspond to the actual VAV zones were also modeled.  Yet, 
even with this substantial effort, energy usage results generated by the model differed significantly from 
actual building performance. Figure 1 shows the three-dimensional model of the case-study building. 

 
Figure 1: 3D Image of the EnergyPlus simulation model of the case-study building 

 
2.2.1 Weather data 
 
Weather is one of the most important factors in predicting a building’s energy performance. Actual 
weather data are necessary for calibrating a simulation model with measured data from buildings. 
Traditionally, energy model practitioners use weather data from the National Weather Station nearest the 
building site. In this study, an on-site weather station was used to capture the micro-climate variation in 
the area where the building is located. A full set of weather data points was collected from the local on-
site station, including the dry-bulb temperature, dew point temperature, relative humidity, solar radiation, 



 

wind speed/direction, and precipitation. Those weather data points were customized into the EnergyPlus 
weather file to be used in the simulations.  
 
2.2.2 Zoning 
 
Zoning is a method of simplifying an energy model while maintaining a reasonable level of accuracy. The 
degree of simplification entailed in zoning depends on the intended use of the model, e.g., for 
architectural design, code compliance, green building rating, evaluating ECMs, or other types of analysis. 
For typical model usage, the general criteria for thermal zoning include taking into account zone 
functionality, orientation, thermostat control, and whether a zone is perimeter or interior. 
 
For modeling of existing buildings, utilizing all available information is essential. In this study, a BMS 
provides the characteristics of each building system component. For example, for a VAV box, we can 
derive a full set of parameters from the BMS, including minimum/maximum airflow rates in 
cooling/heating mode, damper position, and the reheat coil valve position. In order to avoid a mismatch 
between thermal zone and VAV box in EnergyPlus, we used the area served by each VAV terminal as the 
basis for determining the zones in the model as shown in Figure 2. The advantage of this approach is that 
it captures the actual performance of VAV terminals and makes calibration easier. 
 

 
 

 
Figure 2: Thermal zoning of the case-study building model’s 4th floor  

 
2.2.3 Internal loads 
 



 

Most buildings don’t have a sub-metering system for monitoring energy usage of each building system 
component. And in many buildings, the actual performance of the space load can differ significantly from 
the designed operation. During initial model development, the best way to simulate space load is 
following the relevant code or standard. ASHRAE standards 62.1, 90.1 and Title 24 standard are used to 
determine occupant density and the lighting and plug load densities, respectively, in each type of zone. 
Inputs from the standards would be used if no sub-metered data from the building were available. 
 
2.2.4 Building system loads 
 
Equipment specifications and building HVAC schedules provide all important characteristics for each 
system component, including air-side components (VAVs, AHUs, return and exhaust fans, etc.) and 
water-side components (chillers, cooling towers, chilled/condenser water pumps, rooftop air-conditioning 
units, etc.). For each component, all key parameters are identified as shown in Table 2. 

Table 2: Key parameters of building HVAC system components 

Air-side components Parameters Water-side components Parameters 

Thermostat setpoints 
Each system control 
zone’s thermostat 
temperature set point 

Steam absorption chiller 

Nominal capacity, 
entering/leaving water 
temperature and flow rate 
at evaporator and 
condenser, steam load at 
generator, associated 
pump power, operating 
temperature setpoints  

VAV terminals 
Minimum/maximum 
airflow rates under 
cooling/heating mode 

Electric centrifugal chiller 

Nominal capacity, 
coefficient of 
performance, 
entering/leaving water 
temperature and flow rate 
at evaporator and 
condenser, operating 
temperature set points, 
operating curves 

Supply/return fans in 
AHUs 

Supply airflow rate, 
supply fan power, 
pressure, part-load curve 

Pumps Type, water flow rate, 
nominal power 

Exhaust fans Fan power, airflow rate, 
operating efficiency Cooling towers 

Nominal capacity, 
entering/leaving water 
temperature and flow rate 
under design conditions, 
tower fan power, part-
load curve, operating 
temperature set points 

Coils in AHUs 

Cooling capacity, 
entering/leaving chilled 
water temperature, water 
flow rate 

Rooftop units 
Nominal capacity, 
characteristics of supply 
fan and cooling coil  

 
3 Model calibration 
 
The purpose of calibrating a model is to obtain accurate and high-quality simulation results that show 
good agreement with measured data (Pan et al., 2008; Yin et al., 2010). Several standards and guidelines 
provide the acceptable calibration tolerance of the cumulative variation of root mean squared error 



 

(CVRMSE) and the mean bias error (MBE) for annual, monthly, and hourly data calibration. A 
simulation model can thus be calibrated until it satisfies all of these criteria. Here are definitions of each 
metric used in the following equation: M (Measured), S (Simulated), and N (Number of month). 

( )

month
month

month

month
month

month

1/22

monthmonth
month

month

month
month

month

(M S)MBE (%) 100%
M

RMSECV(RMSE )(%) 100%
M

M S
RMSE

N

(M )
M

N

 −
= × 

 
 = ×  

  −  =  
  

=

∑

∑
 

Table 3 presents the acceptable tolerances for monthly and hourly data calibration according to ASHRAE 
Guideline 14. Our initial models were calibrated to achieve the acceptable monthly tolerances based on 
the required MBE and CV(RSME) then again calibrated based on hourly data to increase accuracy. 

Table 3: Acceptable calibration tolerances 

Calibration Type Index Acceptable Value 

Monthly 
MBEmonth ±5% 

CV(RMSEmonth) 15% 

Hourly 
MBEhour ±10% 

CV(RMSEhour) 30% 
 
In this study, the purpose of calibrating the model was not only to evaluate the whole-building energy 
performance, but also to provide accurate simulation results for major building system components to 
accurately capture the effect of various DR strategies. Generally, models will be calibrated to the level of 
whole-building utility measurements. However, in some cases, a model with good calibration of the 
whole-building energy usage does not produce accurate results for each end use. Therefore, we began by 
calibrating the model at the level of each component end use, e.g., lighting, plugs, supply fans, chillers, 
and other sub-metering end uses. Whole-building energy usage can be easily calibrated once the 
components have been calibrated.  
 
The simple measuring and actuation profile (sMAP) allows instruments and other producers of physical 
information to directly publish their data, which is a great tool for studying buildings, allowing 
organization and querying of large repositories of physical data from BMSs. In this study, sMAP was 
used to collect and retrieve the data. There sMAP and the EnergyPlus simulation models can be bridged 
by exchanging monitoring data points and model data inputs. This data exchange speeds up the process of 
model calibration because model data inputs do not have to be manually validated. In addition, the 
process of model calibration can take place off line or in real time on line. Figure 3 presents a schematic 
of automated EnergyPlus model calibration based on linking the sMAP and the model. 
 
Most previous research work in the field of model development and calibration focuses on the whole-
building level to evaluate the effects of ECMs, building HVAC system control strategies, and so on. For a 
commercial building, whole-building energy usage is composed of the HVAC system, lighting and plug, 
and miscellaneous loads. A model that is well calibrated at the whole-building level might give an 
unreasonable breakdown at the sub-utility level. For DR studies, demand savings come from each load 



 

category: fan, chiller, pump, cooling tower, and lighting and plug loads. Therefore, it is essential to 
validate all relevant system components’ performance to ensure a high level of model accuracy. Generally, 
the building geometry and envelope are modeled as they are, and there is limited potential for model 
calibration for these components once they are verified by a field survey. As mentioned above, a key 
activity during this portion of the process is to define the internal thermal zones within the building. There 
is a commonly known trade-off among simplification (zoning), simulation speed, and model accuracy.  
After the model is developed, component-based calibration can be used to verify space loads and HVAC 
system and plant loads, step by step. Raftery et.al (2011) describe such an evidence-based model 
calibration methodology, and Wang et al. (2013) describe a comparable monitoring-based HVAC 
commissioning method. 
 

Building Management System

• Lighting & plug loads
• HVAC system
• Heating/cooling plants 

sMAP

• Data collection & storage
• Visualization
• Analysis 

EnergyPlus Model

• Offline data fitting
• Comparison and calibration 
• DR analysis 

Building Geometry and Envelope

• Geometry and construction
• Zoning 
• Thermal mass 
• Infiltration 

Space Loads

• Walk-in occupant audit
• Floor level lighting and plug 

load sub-metering
• Space-based plug load audit 

HVAC System

• VAVs
• AHUs
• Operational mode 

Plant

• Steam usage
• Chillers
• Cooling towers
• Pumps 

Data feeding

Comparison

 
Figure 3: Schematic of Automated EnergyPlus Model Calibration 

3.1 Space loads 
 
Space loads usually account for nearly one-third of whole-building power usage in commercial office 
buildings (CBECS, 2012). During field surveys, it is easy to estimate the number of people and behavior 
in a building. However, as noted above, most buildings don’t have sub-metering systems to measure 
actual lighting and plug load power consumption. The result is over- or under-estimation of lighting and 
plug loads, which affects subsequent simulations of the HVAC system and plant loads.   
 
3.1.1 Occupants 
To enable estimation of the number of building occupants and the carbon dioxide (CO2) concentrations of 
outdoor fresh air and indoor air for the study building, the BMS and sensors monitored the outdoor air 
damper position and the supply airflow rate. CO2 measurement sensors were calibrated to be less than 75 
ppm – the accuracy specification in California’s Title 24 standard. On a test day, actual hourly occupancy 
profiles were recorded by counting the number of occupants in the open-plan office area on the study 
building’s fourth floor, as shown in Figure 4. Two algorithms for estimating the number of occupants are: 
steady-state (ASHRAE standard 62-1989R) and dynamic detection (S. Wang et al., 1999). 

𝑃𝑃 ∙ 𝑆𝑆 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚𝑂𝑂𝑂𝑂(𝐶𝐶𝑂𝑂𝑂𝑂 − 𝐶𝐶𝑅𝑅) = 𝑉𝑉
𝑑𝑑𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

 

 
Steady-state detection algorithm:  

𝑃𝑃 =
𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚𝑂𝑂𝑂𝑂(𝐶𝐶𝑅𝑅 − 𝐶𝐶𝑂𝑂𝑂𝑂)

𝑆𝑆
 

Dynamic detection algorithm: 

𝑃𝑃 =
𝐸𝐸𝑎𝑎𝑎𝑎(𝑚𝑚𝑂𝑂𝑂𝑂

𝑖𝑖 + 𝑚𝑚𝑂𝑂𝑂𝑂
𝑖𝑖−1)�𝐶𝐶𝑅𝑅𝑖𝑖 − 𝐶𝐶𝑂𝑂𝑂𝑂𝑖𝑖 �
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𝑆𝑆∆𝑡𝑡
 

 
Where, 

𝑃𝑃: Number of occupancy in the space 



 

𝑆𝑆: Average CO2 generation rate of an occupant, m3/h 
𝐸𝐸𝑎𝑎𝑎𝑎: Air change effectiveness 
𝑚𝑚𝑂𝑂𝑂𝑂: Outside air volume flow rate, m3/h 
𝐶𝐶𝑂𝑂𝑂𝑂: CO2 concentration of the supply air, ppm 
𝐶𝐶𝑅𝑅: CO2 concentration of the return air, ppm 
𝑉𝑉: Air volume of the space, m3/h 
 

Figure 4 compares estimated and recorded occupant profiles on a workday. The estimated occupancy 
profile is calculated at 15-minute intervals based on the dynamic detection algorithm of the outdoor 
airflow rate and indoor and outdoor CO2 concentrations. We can see that, during the typical lunch-hour 
period of 12pm to 2pm, most occupants left the building. At the same time, frequent opening of office 
doors pushed more fresh air into the office space, which was not captured in the monitoring system, and 
the estimated number of occupants was lower than recorded. However, overall, the estimated occupancy 
profile tracks true occupancy patterns on this test day well. As shown in Figure 5, the estimated 
occupancy profile indicates that very few people come to work on weekends and holidays. It is 
recommended that the occupancy profile be recorded at 15-minute or 1-minute intervals for effective 
validation of the occupant detection algorithm. Using this method, the estimated occupancy profile can be 
imported into the simulation model to replace the default occupant densities and schedules on weekdays, 
weekend and holidays of each month. 

 
Figure 4: Estimated occupancy profile in an open office area on a test day  



 

 
Figure 5: Estimated occupancy profile in an open office area over two weeks 

 
3.1.2 Lighting and plug loads 
 
The increasing implementation of sub-metering in buildings resolves the above problems with estimation. 
In this study, it was proposed that we combine the lighting sub-metering system and the field plug load 
audit to feed the actual lighting and plug load densities and schedules into the model. As shown in Figure 
6 and Figure 7, the actual operational schedules of the lighting and plug loads on the fourth floor can be 
obtained from the monitoring system via sMAP and imported into the model either off line or in real time. 
Notice that the lighting system usually turns on at 7AM, and most students come to work in open offices 
starting at 10AM, as indicated by plug power usage. Most of the plug loads were still on during off hours. 
 



 

 
Figure 6: Calibrated 4th-floor lighting power schedules on weekdays and weekends 

 
Figure 7: Calibrated 4th-floor plug power schedules on weekdays and weekends 

 
Table 4 compares the initial estimated and calibrated plug loads for each floor. The initial plug load 
power density was estimated as 13 W per square meter (W/m2) in the office area, and each floor’s plug 
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load was determined through a detailed plug load audit. Differences between the initial estimated and 
calibrated plug load power usage are about -55%~27.6%. For building spaces with different 
functionalities, it is very challenging to accurately estimate plug power use without sub-meters or detailed 
building audits. Even with a comprehensive building plug load audit, it is hard to understand the plug load 
schedules at the building or floor level. 

Table 4: Comparisons of initial estimated and calibrated plug load on each floor 

No. Floor Initial estimated (kW) Calibrated (kW) Differences 
1 32.4 25.4 27.6% 
2 13.5 30.0 -55.0% 
3 8.2 15.5 -47.1% 
4 10.4 16.7 -37.7% 
5 12.9 15.7 -17.6% 
6 6.8 6.9 -2.0% 
7 8.5 12.5 -32.1% 

 
3.2 Air-side components  
 
3.2.1 Variable air volume  
 
Taking the advantage of the VAV-based zoning approach, the physical data points from sMAP were 
derived and fed into the model, including each control zone’s thermostat temperature set point and 
minimum/maximum airflow rates under heating/cooling mode. All of these parameters are essential to 
capture the zone-by-zone thermal load and corresponding VAV performance. Figure 88 shows the 
significant difference between the original simulated airflow rate from ASHRAE 62.1-2007 and the 
design airflow rate. The design minimum ventilation rate is very close to the value required in California 
building code Title 24-2008. Most of the building’s VAV terminals are oversized and thus have higher 
minimum airflow rates, which causes a discrepancy in the supply fan airflow rate under cold or cool 
weather conditions. This discrepancy between the standard and the design ventilation rate could lead to 
lower fan power predictions from the model when most VAV terminals are running in minimum mode. 
At the same time, this discrepancy means that nearly 30% of the difference between the measured and the 
standard minimum ventilation rates could be applied to reducing building HVAC demand. 



 

 
Figure 8: Comparisons of design, Title 24-2008, and ASHRAE 62.1-2007 minimum ventilation rates 

 
3.2.2 Air-handling units 
 
With regard to fan power calibration, the part-load curve can have a major impact on simulated fan power 
usage. The actual operational curve can be different from the manufacturer reference curve or laboratory 
data. Therefore, it is important to derive the operational curve from measured data. AHUs usually contain 
more than two parallel fans. It is not easy to simulate this type of fan configuration in some simulation 
tools. If the parallel fans are identical and running in a similar operational mode, an accurate part-load 
curve can be applied to create a virtual large fan that represents the parallel fans. 
 
Using measured data on supply airflow rate and fan power percentage, we developed the actual fan 
operational curve of part-load performance shown in Figure 9. Because of the limited range of fan 
operation, two virtual points were put into the data set to stand for the operational conditions when the 
supply fan is running at 100% load. However, the data set is still missing large ranges of fan operational 
conditions that cannot be obtained from the building monitoring system. To validate the new operational 
curve, we derived another new set of data points from the monitoring system. 
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Figure 9: Comparison between reference and actual operational fan part-load curves 

 
Figure 10 compares measured and predicted power load fraction. The validation results indicate that the 
new curve captures the fan performance well under different operational conditions.  

 
Figure 10: Validation of the new supply fan operational curve 

 
3.3 Water-side components 
 
Three curves affect the electrical chiller cooling capacity performance: function of temperature, electrical 
input to cooling output ratio function of temperature, and electrical input to cooling output ratio function 
of part-load ratio curve (EnergyPlus). Those curves are used to capture the difference between the actual 
operational conditions and the design conditions, including the temperature of water exiting the chiller, 
the temperature of water entering the condenser, and the part-load ratio. Therefore, it is crucial to 
calibrate these three curves using real-time measured data. As shown in Figure 11, all chiller operational 
curves are derived for a set of monitoring data points and validated by using a new set of data points. The 
cooling tower requires only one curve, which is similar to the supply fan operation curve. The variable-
speed tower model is based on empirical curve fits of field measurements. Given the airflow rate and fan 
power percentage, the cooling tower fan power ratio curve can be easily calibrated as shown in Figure 13. 

 
Figure 11: Electrical input to cooling output ratio function of part-load ratio curve 



 

 
Figure 12: Validation of calibrated chiller model curve – Electric input to cooling output ratio 

 

 
Figure 13: Cooling tower fan power ratio as function of airflow ratio 



 

 
4 Results 
 
The following subsections compare simulated and measured results for lighting, plug loads, AHUs, and 
cooling tower power usage in the case-study building. In addition, we show how the calibrated model was 
validated with simulations of DR control strategies that demonstrate its ability to predict dynamic 
building responses. 
 
4.1 Lighting, plug, air-handling unit, and cooling plant power usage 
 
Figure 14 shows the measured lighting and plug power consumption plotted against the simulated data for 
every 15 minutes during a week in July, 2011. NMBE and CV(RMSE) for this comparison are 7.5% and 
12.5%, respectively, indicating that the model’s predictions of plug power usage show good agreement 
with the measured data.  

 
Figure 14: Comparison of measured and simulated lighting and plug load power usage during a 

week in summer 2011  

The comparison between calibrated simulation and measured results yields a monthly MBE within 10%. 
Using a new data set to evaluate the model’s predictions at the hourly level, we see that the hourly 
simulation results match the measured results with 20% for at least 20 of 24 hours each day. The 
calibration results meet the whole-building calibrated simulation performance requirement in ASHRAE 
Guideline 14. 
 
Using the calibrated fan model curve described earlier along with calibrated space loads (occupant, 
lighting, and plug) substantially improves the accuracy of the simulated fan power in relation to measured 
data. Figure 15 shows how the calibrated supply fan power matches the measured data. The simulated fan 
power usage showed good agreement with the measured data during most operational hours. NMBE and 
CV(RMSE) for this comparison are -1.8% and 5.7%, respectively.  
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Figure 15: Comparison of sub-metered power usage of supply fans, return fans, and two exhaust 
fans 

During the test period in summer 2011, the building’s monitoring system showed that the centrifugal 
chiller was short-cycling at low load. As a result, the building ran the absorption chiller, so there were no 
available data points for the electrical chiller to compare to simulated results. Also, between September 
and November, the minimum ventilation airflow rate was reset at 70% of the original value for most VAV 
boxes. The calibrated model adjusted the minimum airflow parameter to match actual operation. Table 5 
shows that the model error remains within the acceptable range with this adjustment. 
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Figure 16: Comparison of cooling tower measured and simulated power usage during a test week 

As summarized in Table 5, calibration significantly improved the EnergyPlus model’s accuracy to 5.7% 
for the VAV fan system and 12.5% for the lighting and plug loads.  In addition, the model’s ability to 
forecast AHU performance during periods of reduced ventilation rate still satisfies the model calibration 
tolerance. 

Table 5: Results of model calibration based on monitoring data  

Electric Load Test periods in 2011 NMBE CV(RMSE) 
HVAC – AHU (Original ventilation) Jul 25th to Aug 3rd -1.8% 5.7% 
HVAC – AHU (70% of Minimum airflow) Sep 24th to Oct 24th  7.7% 10.7% 
Lighting & Plug load Jul 25th to Aug 3rd 7.5% 12.5% 
HVAC – Cooling Tower Jul 25th to Aug 3rd 1.8% 40.9% 

 
4.2 The Model’s Prediction of Dynamic Response 
 
The calibrated model results show good agreement with measured building data at the whole-building and 
sub-utility system component level during normal operating conditions. The model faces an additional 
challenge in predicting the effect of dynamic response control strategies on major system components, 
including supply and return fans serving the office portion of the building. 
 
A DR event was called at the building on August 22, 2011. A set of DR strategies was tested between 2 
pm and 7:30 pm. First, at 2 pm, supply air temperature was increased 2°F, from 56°F to 58°F. An hour 
later, the supply air temperature was increased by an additional 2°F. An hour later, all VAV boxes were 
controlled to provide ASHRAE default ventilation rates, which were 30% less than the building’s normal 
ventilation rates. At 4:40pm, zone temperature set points were increased from 70°F to 74°F. At 6:30pm, 
the reheat coil was disabled in the building. Finally at 7:30pm, all systems reverted slowly, over an hour, 
back to normal operation. Figure 17 compares the simulated and measured supply and return fan power 
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usage during the DR test event. Notice that the actual system response time for temperature adjustments 
(e.g., raising supply air temperature, raising thermostat set point) was longer than the response time for 
reducing the VAV minimum airflow rate. The model did not capture the response time for activating the 
control signal in the BMS. The calibrated model gives a good prediction of dynamic controls; the NMBE 
and CV(RMSE) are -3.6% and 7.1%, respectively. 

 
Figure 17: Comparison of measured and simulated supply and return fan power during a DR test 

event 

On August 2, 2012, the team conducted another integrated test of various control strategies for demand 
reduction during the peak hours of 2pm to 6pm. From 11:30am to 2:30pm, the building was pre-cooled by 
reducing the global temperature set point to 70°F from 72°F. As noted earlier, the effect of utilizing 
building thermal mass for pre-cooling has been demonstrated in field test studies (Xu et al., 2007; Yin et 
al., 2010). From 2:30pm to 6pm, the global temperature set point was reset to 76°F, and the minimum 
ventilation rate for all VAVs except those in electrical rooms was reduced by 70% of the original value. 
At the same time, the supply air temperature was raised 2°F from 58°F to 60°F, and the lighting and 
receptacle loads were reduced by about 40% throughout the building. The exactly same control strategies 
were implemented in the model. Table 6 shows the comparison between measured and modeled results. 
We can see that the model’s prediction of increasing power for pre-cooling the building is underestimated 
in comparison to the measured data. For demand reduction, the predicted results are very close to the 
measured data because the AHUs dropped to their lowest ventilation rate during the on-peak test period. 
When the rate is that low, there is very limited room for model uncertainties to affect the prediction of 
AHU power savings. 

Table 6: Comparison between measured and simulated AHU performance during a DR test event 
(Peak outside air temperature: 70°F) 

Test periods Pre-cooling hours DR event hours 
Demand savings (kW) Min Max Ave Min Max Ave 
Measured -39.9 -20.1 -32.7 20.0 31.3 26.6 
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Simulated -23.9 -19.1 -21.4 25.0 29.7 27.0 
 
5 Application of the calibrated model to demand response 
 
To achieve the goal of 30% peak demand reduction in the building, various DR strategies were proposed 
that addressed HVAC, lighting, and plug loads. After implementation of best practices for lighting and 
plug loads, significant demand reduction was still needed; the additional reduction had to come from the 
HVAC system. A common strategy for reducing HVAC system power is to pre-cool the building prior to 
a DR event and adjust global temperature set points during DR event hours. However, the HVAC 
system’s capacity for demand reduction is limited, so a more aggressive control strategy was required. 
Thermostat set-point adjustment combined with a reduction in minimum airflow is an aggressive DR 
control strategy that takes full advantage of VAV system. Both field and laboratory studies show that 
reduction of minimum VAV airflow rate can significantly reduce energy use without increasing occupant 
dissatisfaction (Arens et al., 2012). 
 
To evaluate the effect of different control strategy combinations, we demonstrated the use of the 
calibrated model. For this case study, we conducted a comprehensive matrix of simulations on a hot day 
with peak outside air temperature of 90°F. Multiple levels of DR, from low to high, were defined. The 
ASHRAE thermal comfort standard permits only 6°F of temperature drift and ramp during a period of 4 
hours (ASHRAE Standard 55, 2010). Relatively comfortable building conditions can be maintained 
within a range of space temperatures from 70°F to 78°F (Xu et al., 2008). The thermostat set point 
adjustment was simulated at various levels: 2°F, 3°F, 4°F, 5°F, and 6°F higher than the original set point. 
The minimum ventilation rate for VAVs was simulated at 30%, 40%, 50%, 60%, and 70% of the original 
value. The simulation results were put into a simple look-up table to enable selection of the optimal 
control strategy that would meet the peak-demand reduction goal under specific weather conditions. 

 
Figure 18: Comparison of peak demand reduction from HVAC system for all control scenarios 
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Figure 19: Comparison of peak demand reduction from AHUs for all control scenarios 

Figure 18 and Figure 19 compare the peak demand reduction from the HVAC system and the AHUs. As 
we can see in Figure 19, there is a bottom line of demand reduction from the AHUs for the control 
strategy of minimum ventilation rate adjustment. Reductions beyond 40% of the original minimum 
ventilation rate show very little impact on AHU power savings for thermostat set-point adjustments. The 
reason is that most VAVs would run above the minimum ventilation rate on such as hot day. A building 
with an oversized ventilation rate can save more power from the AHUs by combining minimum 
ventilation rate adjustments with thermostat adjustments. As for the whole HVAC system, the power 
usage of the chiller, cooling tower, and pump decrease with increasing thermostat set points. The 
calibrated model can provide the facility manager with a reliable prediction on which to base a smart 
control strategy to achieve the peak-demand reduction goal. 
 
6 Discussion 
 
This study demonstrates a bottom-up, component-based method of calibrating a building performance 
simulation model. For this process, the model description needs to be well balanced, taking into account 
available building information, the model’s use and computation speed, and other relevant factors.  For 
modeling existing buildings, it is very important to make use of sensor and meter data to calibrate the 
model. For example, thermal zoning in this study was developed based on the case-study building’s actual 
VAV control areas. Each VAV terminal, key parameters, e.g., minimum/maximum airflow rate, can be 
input to the model. The principle underlying this approach is to put all pieces of evidence or data from the 
building into the model. However, including every data point from a building can make the process of 
model calibration very time-consuming. The energy balance in a building energy simulation, in which 
three major parts of a model (building, system, and plant) can be simulated either simultaneously, suggest 
that an effective way to calibrate a model is to break down systems into their components and to validate 
the model inputs from the building to the system to the plant. Identifying the uncertainties in the key input 
parameters can also help reduce complexity and the effort to validate a model. 
 
Skepticism is sometimes expressed about the predictions of even a well-calibrated model because a model 
is static whereas a building’s operational behaviors are dynamic. For a model to accurately reflect a 
building’s changing operations, especially for advanced-use real-time model simulations, the model must 
be connected to the BMS so that monitoring data can be imported automatically into the model in real 
time. In these cases, an automatic process for model calibration is essential to incorporate actual 
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operational data. A direct connection between the model and the BMS with automated model calibration 
reduces the time and effort related to developing model inputs and verifying them against actual building 
performance. The auto-calibration approach will be very effective as sensors and meters are increasingly 
deployed in BMSs.  
 
Another option is to construct a hybrid: a combination of the data-driven model with a physical model in 
a diagram. For example, a building cooling load model could be developed using measured data from 
sensors and meters installed in the HVAC system and plant. This data-driven model of cooling load could 
be connected to other physical model components in a loop. However, this type of model would not be 
useful for analysis of some building components, such as the building envelope and daylighting.  
 
As indicated in the study, the approach of model development and calibration requires many meters and 
sensors, which could be very challenging to scale up for hundreds of buildings. It would be very efficient 
to focus on key parameters that have uncertainties such as space loads (occupancy, lighting and plug), 
HVAC system components’ specifications and actual operational conditions. Without meters and sensors 
installed in the building, the alternative method is to conduct a deep building audit and use the technical 
approach of load disaggregation from the whole building power.  
 
To evaluate the performance of our calibrated model in predicting building behavior during DR, we 
assessed the model’s accuracy in rendering the effect of various control strategies on peak-demand 
reduction. For the application of model for DR, the calibration of each VAV terminal should be paid more 
attention as the adjustment of thermostat setpoint gives direct impact on the fan performance. In the case-
study building, which is over-ventilated, adjusting the thermostat setpoints did not take advantage of the 
full potential power savings from the HVAC system. An integrated control strategy of thermostat set 
point adjustment and minimum ventilation rate resets enabled multiple VAVs to run in a broad range, 
which increased the peak-demand savings. Overall, given a goal of peak-demand reduction on a certain 
day, the model can be used to run all kinds of control scenarios to provide the facility manager with 
reliable predictions that can be used as a basis for day-ahead or day-of DR operations. 
 
7 Summary and Conclusions 
 
This paper describes a case study of developing a building performance model for an existing campus 
building; calibrating the model using a bottom-up, component-based method; and applying the model to 
predict DR behavior in the case-study building.  A wide variety of sensors in the building were linked to 
the model’s inputs, allowing for automated calibration of the model. This is a fast efficient way to ensure 
accurate DR modeling. One of the key factors needed to calibrate the model was information on occupant 
behaviors. This information was validated using the relationship between indoor and outdoor CO2 
concentrations. After the calibration of other building components – lighting, plug, HVAC system, and 
plant loads – we conducted a field test of DR control strategies to evaluate the model’s ability to predict 
dynamic building responses. The calibrated model yielded a very good prediction of AHU performance in 
a DR test mode; the model errors NMBE and CV(RMSE) were -3.6% and 7.1%, respectively. Another 
key finding of this study is that thermostat setpoint adjustment should be combined with a reduction in 
minimum airflow to achieve the best DR performance, especially in over-ventilated buildings. 
 
In the future, automated model development and calibration will be widely used as Building Information 
Modeling and low-cost sensors and meters in buildings are increasingly deployed. As more and more data 
are available from buildings, each component of a physical model can be represented as the input to a 
data-driven model. Such a hybrid model can accurately predict a building’s dynamic response during DR, 
event and can also optimize building operation under normal conditions. 
 



 

8 Acknowledgments 
 
This work described in this paper was coordinated by the University of California at Berkeley, Siemens 
Corporation Research, and the Lawrence Berkeley National Laboratory (LBNL) Demand Response 
Research Center and was funded by the U.S. Department of Energy, under DOE contract DE-AC02-
05CH11231, Award Number DE-EE0003847. The authors are grateful for the extensive support from the 
Auto-DR program managed by the Demand Response Research Center at LBNL. Special thanks to Prof. 
David Culler, Prof. David Auslander, and Therese Peffer for providing their insight and support, and to 
Jianmin Zhu from Siemens Corporate Research. Thanks also to University of California building manager 
Domenico Caramagno for providing technical support. 
  
9 References   
 
ASHRAE, ANSI/ASHRAE 62.1-2010 Ventilation for Acceptable Indoor Air Quality. Atlanta, GA, 
American Society of Heating, Refrigeration and Air Conditioning Engineers, 2002 
 
ASHRAE, ASHRAE guideline 14 for measurement of energy and demand savings. Atlanta, GA, 
American Society of Heating, Refrigeration and Air Conditioning Engineers, 2002 
 
Arens, E., H. Zhang, T. Hoyt, S. Kaam, J. Goins and F. Barman, Thermal and air quality acceptability in 
buildings that reduce energy by reducing minimum airflow from overhead diffusers, ASHRAE 1515RP 
Final Report, 2012, CBE, UC Berkeley 
 
Kim, J., R. Yin and S. Killiccote, Automated Price and Demand Response Demonstration for Large 
Customers in New York City using OpenADR, Lawrence Berkeley National Lab., Berkeley, CA, LBNL-
6470E, 2013 
 
Lam, K,, M. Hoynck, B. Dong, et al., Occupancy detection through an extensive environmental sensor 
network in an open-plan office building, in the 7th international conference of IBPSA, Glasgow, Scotland. 
July 27-30, 2009 
 
Motegi, N., M.A. Piette, D. S. Watson, S. Kiliccote, P. Xu, Introduction to commercial building control 
strategies and technologies for demand response, Lawrence Berkeley National Lab., Berkeley, CA, 
LBNL-59975, 2007 
 
Norford, L.K., R. H. Socolow, E. S. Hsieh, and G. V. Spadaro, 1994. Two-to-one discrepancy between 
measured and predicted performance of a 'low-energy' office building: insights from a reconciliation 
based on the DOE-2 model, Energy and Buildings 21 (1994), pp. 121-131. 
 
New, J., J. Sanyal, M. Bhandari and S. Shrestha, Autotune E+ Building Energy Models, in Proceedings of 
SimBuild Conference of IBPSA-USA, Wisconsin, WI, 2012 
 
Keeney, K., and J. E. Braun, Application of building precooling to reduce peak cooling requirements, 
ASHRAE Transactions 103 (1997), pp. 463-469. 
 
O’Neill, Z., B. Eisenhower, Leveraging the analysis of parametric uncertainty for building energy model 
calibration, Building Simulation, no.6, pp.365-377, 2013 
 
Pan, Y., R. Yin, Z. Huang, Energy modeling of two office buildings with data center for green building 
design, Energy and Buildings, vol. 40, no. 7, pp. 1145-1152, 2008 
 

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ER2R560AAAAJ&citation_for_view=ER2R560AAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ER2R560AAAAJ&citation_for_view=ER2R560AAAAJ:u5HHmVD_uO8C


 

Reddy, T.A., M. Itzhak, and C. Panjapornpon, 2007. Calibrating detailed building energy simulation 
programs with measured data - Part I: general methodology, HVAC&R Research Journal 13 (2007). 
 
Reddy, T.A., M. Itzhak, and C. Panjapornpon, 2007. Calibrating detailed building energy simulation 
programs with measured data - Part II: application to three case study office buildings, HVAC&R 
Research Journal 13 (2007). 
 
Raftery, P.,, M. Keane, and J. O’Donnell, Calibrating whole building energy models: An evidence-based 
methodology, Energy and Buildings, vol. 43, no. 9, pp. 2356–2364, Sep. 2011. 
 
Raftery, P., M. Keane, and A. Costa, Calibrating whole building energy models: Detailed case study 
using hourly measured data, Energy and Buildings, vol. 43, no. 12, pp. 3666–3679, Dec. 2011 
 
Rabl, A., and L. K. Norford, Peak load reduction by preconditioning buildings at night, International 
Journal of Energy Research 15 (1991), pp. 781-798. 
 
sMAP, the Simple Measurement and Actuation Profile. http://new.openbms.org/ 
 
Title 24, 2008 Building Energy Efficiency Standards for Residential and Non Residential Buildings, 
California Energy Commission, 2008. 
 
Turner, C., M. Frankel, Energy Performance of LEED for New Construction Buildings, New Building 
Institute, Prepared for U.S. Green Building Council 
 
U.S. Department of Energy, EnergyPlus 8.1, http://apps1.eere.energy.gov/buildings/energyplus/ 
 
Wang, L., S. Greenberg, J. Fiegel, A. Rubalcava, S. Earni, X. Pang, R. Yin, S. Woodworth, and J. 
Hernandez-Maldonado, Monitoring-based HVAC commissioning of an existing office building for 
energy efficiency, Applied Energy, vol. 102, no. 0, pp. 1382–1390, Feb. 2013. 
 
Wang, S., J. Burnett, H. Chong, Experimental validation of CO2-based occupancy detection for demand-
controlled ventilation, Indoor Built Environment, no.8, pp.377-391, 1999 
 
Xu, P., P. Haves, J. E. Braun, and L. t. Hope, Peak demand reduction from pre-cooling with zone 
temperature reset in an office building, in Proceedings of 2004 ACEEE Summer Study of Energy 
Efficiency in Buildings, Pacific Grove, CA, 2004. 
 
Xu, P., P. Haves, Case study of demand shifting with thermal mass in two large commercial buildings, 
ASHARE Transactions 112 (2005), pp. 875-888. 
 
Xu., P, R. Yin, C. Brown, and D.E. Kim, Demand Shifting With Thermal Mass in Large Commercial 
Buildings in a California Hot Climate Zone, Lawrence Berkeley National Lab., Berkeley, CA, LBNL-
3898E, 2009 
 
Yin, R., P. Xu, M. A. Piette, and S. Kiliccote, Study on Auto-DR and pre-cooling of commercial 
buildings with thermal mass in California, Energy and Buildings, vol. 42, no. 7, pp. 967–975, Jul. 2010. 
 
Yin, R., S. Kiliccote, M. A. Piette, and K. Parrish, Scenario Analysis of Peak Demand Savings for 
Commercial Buildings with Thermal Mass in California, 2010 ACEEE Summer Study on Energy 
Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010 
 

http://new.openbms.org/


 

Yoon, J., E. J. Lee, and D. F. Claridge, 2003. Calibration procedure for energy performance simulation of 
a commercial building, Journal of Solar Energy Engineering 125 (2003), pp. 251-257. 
 
Zhu, J., L. Shen, R. Yin and Y. Lu, A two-stage simulation-based on-line optimization scheme for HVAC 
demand response, in the 5th National conference of IBPSA-USA, Madison, Wisconsin. August 1-3, 2012 


	Cover for Linking measurements and models in commercial buildings
	Cover Linking measurements and models in commercial buildings

	LBNL-7006E
	1 Introduction
	2 Model development
	2.1 Building description
	2.2 Model development
	2.2.1 Weather data
	2.2.2 Zoning
	2.2.3 Internal loads
	2.2.4 Building system loads


	3 Model calibration
	3.1 Space loads
	3.1.1 Occupants
	3.1.2 Lighting and plug loads

	3.2 Air-side components
	3.2.1 Variable air volume
	3.2.2 Air-handling units

	3.3 Water-side components

	4 Results
	4.1 Lighting, plug, air-handling unit, and cooling plant power usage
	4.2 The Model’s Prediction of Dynamic Response

	5 Application of the calibrated model to demand response
	6 Discussion
	7 Summary and Conclusions
	8 Acknowledgments
	9 References




