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How Baseline Model
Implementation Choices Affect
Demand Response Assessments
The performance of buildings participating in demand response (DR) programs is usually
evaluated with baseline models, which predict what electric demand would have been if a
DR event had not been called. Different baseline models produce different results. More-
over, modelers implementing the same baseline model often make different model imple-
mentation choices producing different results. Using real data from a DR program in CA
and a regression-based baseline model, which relates building demand to time of week,
outdoor air temperature, and building operational mode, we analyze the effect of model
implementation choices on DR shed estimates. Results indicate strong sensitivities to the
outdoor air temperature data source and bad data filtration methods, with standard devi-
ations of differences in shed estimates of �20–30 kW, and weaker sensitivities to
demand/temperature data resolution, data alignment, and methods for determining when
buildings are occupied, with standard deviations of differences in shed estimates of
�2–5 kW. [DOI: 10.1115/1.4028478]

1 Introduction

Through participation in DR programs and electricity markets,
electric loads such as commercial buildings are becoming active
resources that can help balance supply and demand on the elec-
tricity grid [1]. In traditional DR programs, system operators, util-
ity companies, or third-party aggregators achieve system-wide
demand reductions by providing financial incentives for buildings
to reduce their demand during time periods when the grid is
stressed [2]. One way to do this is via dynamic pricing programs,
which send time-varying electricity prices to participants; these
are also known as price-based programs. Electricity prices are
increased when the system is operating near its peak, encouraging
building operators to shed (i.e., curtail) demand or shift it to an
off-peak time [3]. A second approach to DR, known as incentive-
based programs, provides customers with a fixed payment in
exchange for allowing DR providers to directly control their
loads, for example, by thermostat setpoint adjustments. A central
element of evaluating DR program impact is estimation of the
size of demand sheds achieved by program participants. These
estimations are typically made with “baseline models,” which are
used to predict what building demand would have been if a DR

event had not been called. Baseline predictions are compared with
actual measurements of building demand during DR events, giv-
ing us estimates of the size of demand sheds. Baseline models are
usually developed with historical building demand data. Common
models types include averaging models, which average demand
on days similar to the day of the DR event, and regression models,
which relate building demand to known parameters such as time
of day, day of week, outdoor air temperature, and so on. Baseline
models are used for a variety of purposes including measurement
and verification (M&V), improving DR program design and oper-
ation, and, in some cases, financial settlement of DR participation
rewards.

There are many examples of baseline models in the energy effi-
ciency literature [4–9] and the DR literature [10–13]. Some of
these studies compare the accuracy of predictions produced by
different baseline models, e.g., Refs. [10] and [11]. However,
shed estimates from the same model can differ if the model is
implemented by two different building modelers. This is because
specific implementation choices can affect model results. For
example, different approaches to interpreting and filtering bad
data, different methods for calculating model parameters, and dif-
ferent sources of model inputs can all affect baseline predictions.
In turn, different predictions may lead to different evaluations of
DR programs.

The goal of this work is to understand which types of baseline
model implementation choices have the largest effect on DR per-
formance results, specifically demand shed estimates. We use the
linear regression baseline model developed in Ref. [14], which
relates time-of-week, outdoor air temperature, and whether or not
the building is occupied to building demand. Using 15-min
interval whole-building electric demand data from a critical peak
pricing (CPP) program in CA, we investigate the effect of five
baseline model implementation choices: (1) source of outdoor air
temperature data, (2) data resolution, (3) method for determining
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when buildings are occupied, (4) method for demand/temperature
data alignment, and (5) method for filtering out bad data. This
paper is an extension of our preliminary work on this topic [15].

The rest of this paper is organized as follows. Section 2
describes our methods including the baseline model, data, and
modeling choices investigated. Section 3 details the results of each
comparison, Sec. 4 provides a discussion, and Sec. 5 concludes.

2 Methods

2.1 Baseline Model. We briefly describe the baseline model
developed in Ref. [14], which is used in this analysis. The model
assumes building demand is a function of time of week and
assigns a regression coefficient ai to each 15-min interval from
Monday through Friday, ti, where i¼ 1,…, 480. Additionally, it
assumes that when the building is in occupied mode (e.g., during
business hours), building demand is a piecewise linear and contin-
uous function of outdoor air temperature. This choice of function
is justified because we would expect that for some range of mod-
erate outdoor air temperatures heating and cooling are minimal,
and demand is not a strong function of outdoor air temperature,
but as outdoor air temperature increases so do cooling needs and
in turn power consumption. When outdoor air temperature is espe-
cially high, the cooling system may reach its maximum capacity,
at which point demand is no longer a strong function of outdoor
air temperature. These effects are more fully described in
Ref. [14].

To capture the piecewise linear outdoor air temperature depend-
ency, we divide each observed temperature T(ti) into a vector with
elements Tc,j(ti) with j¼ 1,…,6 associated with six equal sized
temperature intervals that cover the full range of observed temper-
atures. A regression coefficient bj is associated with each element
of the vector. The temperature vector elements are computed with
the following algorithm [14]:

(1) Let Bk with k¼ 1,…, 5 be the bounds of the temperature
intervals.

(2) If T�B1 then Tc,1¼B1. Otherwise, Tc,1¼ T, Tc,m¼ 0 for
m¼ 2,…, 6, and algorithm is ended.

(3) For n¼ 2,…, 4, if T�Bn then Tc,n¼Bn–Bn�1. Otherwise,
Tc,n¼ T–Bn�1, Tc,m¼ 0 for m¼ (nþ 1),…, 6, and algorithm
is ended.

(4) If T�B5 then Tc,5¼B5–B4 and Tc,6¼ T–B5.

For example, if the minimum observed temperature is 5 �C and
the maximum is 35 �C, then each bin is 5 �C wide with B¼ (10,
15, 20, 25, 30). Then, we compute the temperature components
associated with each temperature, for example, for T¼ 18 �C, we
find Tc,1¼ 10 �C, Tc,2¼ 5 �C, Tc,3¼ 3 �C, and the remaining tem-
perature components are 0 �C. Note that

P
j Tc;jðtiÞ ¼ TðtiÞ.

In summary, occupied mode building demand is estimated
with

D̂oðti; TðtiÞÞ ¼ ai þ
X6

j¼1

bjTc;jðtiÞ (1)

Unoccupied buildings usually respond differently to outdoor air
temperature than occupied buildings. Therefore, we use different
temperature-related regression coefficients for unoccupied mode.
As in Refs. [14] and [16], we chose to use only one temperature
coefficient, bu, in unoccupied mode because DR events when
buildings are unoccupied are rare, and therefore, we did not feel
the loss of degrees of freedom associated with more temperature
coefficients was justified. In summary, unoccupied mode building
demand is estimated with

D̂uðti;TðtiÞÞ ¼ ai þ buTðtiÞ (2)

Given N temperature/demand observations, Eqs. (1) and (2) can
be written in matrix form

y ¼ Axþ e (3)

where x 2 R487 is the parameter vector (including all a, all b, and
bu), y 2 RN is the vector containing the demand observations,
e 2 RN is the model error, and A 2 RN�487 contains (i) binary
(i.e., 0/1) indicators corresponding to each time-of week, (ii) occu-
pied mode temperature components, and (iii) unoccupied mode
temperatures. We solve for x using an ordinary least squares
estimator

x̂ ¼ ðATAÞ�1ATy (4)

In practice, this is calculated using an algorithm from the software
package that is used to implement the model.

To make a baseline prediction for a series of time-of-week/
temperature pairs of length M, we generate A 2 RM�487 and
solve

ypredict ¼ Ax̂ (5)

To estimate the mean demand shed over a DR event, we make a
baseline prediction for each 15-min interval within the event, sub-
tract the measured demand, and take the mean over time. We refer
to these values simply as “shed estimates” throughout the remain-
der of this paper. Model error associated with shed estimates was
explored in Ref. [16].

2.2 Data. We use 15-min interval whole-building electric
demand data from 28 large commercial buildings and industrial
facilities in Pacific Gas and Electric Company’s (PG&E’s)
Automated CPP Program between 2007 and 2009. All buildings
are located in Central or Northern CA. In the CPP program, on
up to 12 days per year, electricity prices were raised to three
times the normal price between 12 pm and 3 pm in a “moderate
price period” and to five times the normal price between 3 pm
and 6 pm in a “high price period.” These DR events were
announced day-ahead when high peak demand was expected.
DR strategies included heating, ventilation, and air conditioning
set point adjustments, lighting adjustments, and industrial pro-
cess shifting.

We build baseline models with temperature and demand data
from nonholiday weekdays when no DR event was called. We
build separate models for each building in each year (referred to
as a “building-year”) since buildings change year to year and use
only data from May 1 to Sept. 30, which is consistent with the DR
season in CA. Types and numbers of buildings and building-years
used in the analysis are listed in Table 1.

For each DR event and each building-year, we make separate
shed estimates for the moderate and high price periods. Over the
three years considered in our analysis, there were 35 DR events
(12 in 2007, 11 in 2008, and 12 in 2009); however, we leave out
one (Aug. 22, 2007) due to a lack of corresponding temperature
data. Additionally, we do not compute shed estimates for the
museum on Mondays because it was closed. In sum, we use 1108
shed estimates in our analyses.

Table 1 Types and number of buildings used in the analysis

Type
Number of unique

buildings
Number of

building-years

Office buildings 13 20
Industrial facilities 8 13
Retail stores 5 12
Prison and jails 1 2
Museums 1 2
Total 28 49
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We acquired outdoor air temperature data from two sources:
the National Climatic Data Center (NCDC) [17], a division of the
National Oceanic and Atmospheric Administration, and weather
underground [18], a private website that collects data from Perso-
nal Weather Stations (PWS) operated by private individuals and
organizations. PWS undergo a one-time calibration but are not
guaranteed to be monitored by meteorological experts.

From NCDC, we obtained approximately hourly outdoor air
temperature data from the two NWS-USAF-NAVY weather
stations closest to each building. From weather underground, we
collected 5 - or 15-min interval outdoor air temperature data from
the two PWS closest to each building. In many cases, there are
multiple PWS within the same range as the closest NWS-USAF-
NAVY Station. Additionally, the PWS had fewer missing data
points due to a better up-time than the NWS-USAF-NAVY
stations. However, we were unable to obtain suitable weather
underground data from 2007 and so in our weather data source
comparison (Sec. 3.1) we only use 2008 and 2009 data, resulting
in 824 shed estimates.

2.3 Modeling Choices Investigated and Comparison
Methods. We investigate the effect of five types of modeling
implementation choices. We do not attempt to investigate all pos-
sible choices but rather focus on several that we expect could be
implemented differently by different building modelers. The
choices are as follows:

(1) Choice of outdoor air temperature data source: We compare
the effect of using heavily curated low resolution data from
NCDC versus less curated higher resolution data from
weather underground.

(2) Choice of data resolution: Building demand data can be
measured and/or stored at different intervals. We compare
the effect of using 15 -, 30 -, and 60-min interval data.

(3) Choice of method to determine occupied/unoccupied mode
transition times: Buildings usually transition between unoc-
cupied and occupied mode in the morning and between
occupied and unoccupied mode in the evening. To use the
baseline model presented in Sec. 2.1, we need to estimate
these transition times because a building’s temperature
dependency is modeled differently depending on the mode,
according to either Eq. (1) or Eq. (2). We compare the
effect of estimating these times manually versus with an
automated heuristic algorithm.

(4) Choice of time alignment of outdoor air temperature data
with building demand data: Temperature data correspond to
specific time instances while electric demand data are col-
lected over time intervals (e.g., 15-min) and then averaged.
We compare the effect of aligning the data by time stamp
versus offsetting the alignment by 15-min.

(5) Choice of power outage filter: Filtering out bad data and
anomalous data (e.g., from power outages) is essential to
building a good baseline model. We compare the effect
using a simple heuristic power outage filter versus using
no filter or a very sensitive filter. We provide more details
about each comparison together with the respective
results.

For each choice, we compare the results of a “base analysis” to
those of a “variant analysis.” The base analysis uses NCDC tem-
perature data, 15-min interval building demand data, manual esti-
mation of occupied/unoccupied mode transition times, 15-min
offset alignment of temperature and demand data, and the simple
heuristic power outage filter. The variant analyses always use the
same choices as the base analysis except the choice under
investigation.

To compare the effect of different model implementation
choices, we calculate shed estimates for the base analysis and
each variant analysis and then calculate three statistics on the mis-
match defined as shedvariant–shedbase:

(a) Bias: the absolute value of the mean mismatch,
(b) Std dev.: the standard deviation of the mismatch, and
(c) Max.: the maximum absolute mismatch.

3 Results

3.1 Outdoor Air Temperature Data Source. We first com-
pare the results of the base analysis, which uses NCDC tempera-
ture data, to the results of a variant analysis, which uses weather
underground temperature data. In general, for each building, we
used NCDC temperature data from only the closest weather sta-
tion. We linearly interpolated the data to generate temperature
estimates at each 15-min interval. Temperature estimates com-
puted using interpolants greater than 6 h apart (meaning that more
than 6 h worth of data were missing) were filtered out. In cases
where exceptionally large amounts of data were missing, tempera-
ture vectors were filled in using data from the second closest
weather station, as in Ref. [14]. The weather underground temper-
ature data did not require interpolation, though in some cases it
did require down sampling (from 5-min to 15-min interval data).
In general, for each building, we averaged temperature data from
the two closest PWS. However, when the PWS differed in dis-
tance to the building by more than 50%, we used data from only
the closer PWS.

The results are shown in Fig. 1. We plot shed estimates pro-
duced by the variant analysis against those produced by the base
analysis. Negative values correspond to decreases in power
demand (sheds), while positive numbers correspond to increases
in power demand, indicating that a building’s DR strategy was not
working properly. The closer a point is to the diagonal line, the
more the two analyses agree. Points in the lower left quadrant
reflect cases in which both analyses agree that there was a shed.
Points in the upper right quadrant reflect cases in which both anal-
yses agree that demand increased during a DR event. Points in the
upper left and lower right quadrants reflect disagreement between
the two analyses. Since all results are based on models, we are
unable able to determine which baseline model implementation
choice produces better/worse results; we can only compare the
outputs of the analyses. Comparison statistics are summarized in
Table 2, and a box plot of the mismatch is shown in Fig. 6.

In some cases, the base and variant analyses produce signifi-
cantly different results. Different temperature data result in differ-
ent model parameterizations, which can result in different demand
predictions and DR shed estimates. Additionally, different meas-
urements of DR event temperatures result in different model pre-
dictions. DR shed estimates are particularly sensitive to the model
parameters that capture the demand versus temperature relation-
ship when temperature is high. If this relationship is developed

Fig. 1 Effect of outdoor air temperature data source. Base:
NCDC data, variant: weather underground data. Std. dev.:
23.36 kW.
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with insufficient data (i.e., the data set used to build the model
does not contain many high temperatures), it may not be accurate.
In extreme cases, demand prediction requires extrapolation, spe-
cifically, predicting demand given temperatures outside of the
range of temperatures used to build the model.

3.2 Data Resolution. We next compare the results of the
base analysis, which uses 15-min interval data, to the results of
variant analyses, which use 30 - and 60-min interval data. We
computed 30 - and 60-min interval data from 15-min interval data
by taking the mean over each 30 - or 60-min period. Care was
taken to ensure that the intervals were day-aligned, meaning that
the first interval of the day always represented demand during the
interval from midnight to either 00:30 or 01:00. If one or more of
the 15-min interval data points is required to compute a 30- or
60-min interval data point were missing, we did not compute that
30 - or 60-min interval data point, but rather left that entry blank
(i.e., we assume that the data point is missing). This had a minimal
effect on the analysis since building-years typically had fewer
than 10 h of missing data. The results of the comparison are shown
in Fig. 2, Table 2, and Fig. 6.

3.3 Method to Detect Occupied/Unoccupied Mode Transi-
tions. We now compare the results of the base analysis, which
uses a manual method to detect transitions between occupied and
unoccupied modes, to the results of a variant analysis, which uses
an automated heuristic algorithm to detect these transitions. In the
manual method, a building modeler inspects a plot of the mean
daily demand profile of a building and chooses the times at which
the building seems to transition to occupied and unoccupied
modes. This was done for each building-year. In contrast, the
automated heuristic algorithm first calculates the 2.5th and 97.5th
percentiles of the demand, referred to as D2.5 and D97.5. These per-
centiles were chosen based on [19], which proposes use of these

percentiles to filter outliers before conducting building demand
analysis. Then, for each building-year, and each day, the transition
time from unoccupied to occupied mode was determined by cal-
culating the first time during the day that the building demand
transitioned above 0.1� (D97.5�D2.5)þD2.5. The transition from
occupied to unoccupied mode was determined by calculating the
final time during the day that the building transitioned below this
threshold. We then computed the mean transitions over the year.
The results of the comparison are shown in Fig. 3, Table 2, and
Fig. 6.

3.4 Data Alignment. We next compare the results of the base
analysis, in which temperature and demand data are aligned with
a 15-min offset, to the results of a variant analysis, which aligns
data by time stamp. In the base analysis, a temperature measure-
ment with time stamp 3:00 pm was aligned with a demand mea-
surement with time stamp 3:15 pm since the demand
measurement is actually the average demand between 3:00 pm
and 3:15 pm. In contrast, in the variant analysis, a temperature
measurement with time stamp 3:00 pm was aligned with a demand
measurement with time stamp 3:00 pm, a simpler choice. The
results are shown in Fig. 4, Table 2, and Fig. 6.

3.5 Power Outage Filter. Finally, we compare the results of
the base analysis, which uses a simple heuristic power outage fil-
ter, to the results of variant analyses, which use either no filter or
a more sensitive power outage filter. To build a baseline model,
we do not use data from days when the minimum power consump-
tion was less than x percent of the average minimum daily power
consumption. The base analysis uses x¼ 50, while the variant
analyses use x¼ 0 (no filter) and x¼ 75 (sensitive filter). The
results are shown in Fig. 5, Table 2, and Fig. 6. Note that the scale
of the x- and y-axes in Fig. 5 is different than that in Figs. 1–4
because the maximum differences are larger. The results of the
base analysis and variant analysis with no filter look nearly identi-
cal except without filtering the results include approximately 20
outliers that all correspond to a single building-year. Inspection of
the building-year’s time series demand data shows an obvious
power outage. In contrast, the results of the base analysis and vari-
ant analysis with a sensitive filter are significantly different
because the sensitive filter removes significant amounts of data,
and so many of the baseline models in the variant analysis are
built with less data than those in the base analysis.

4 Discussion

We find that shed estimates are strongly sensitive to the source
of the outdoor air temperature data and choice of power outage

Table 2 Base versus variant mismatch statistics

Variant
case

Bias
(kW)

Std. dev.
(kW)

Max.
(kW)

Weather underground
temperature data

0.39 23.36 148.3

30-min interval data 0.10 2.22 14.0
60-min interval data 0.88 4.59 22.7
Automated occupied/
unoccupied mode detection

0.56 2.39 22.4

Alignment of data 1.42 4.59 52.2
No power outage filter 4.25 30.08 394.2
Sensitive power outage filter 2.51 18.55 151.4

Fig. 2 Effect of data resolution. Base: 15-min interval data, var-
iants: 30 - and 60-min data. Std dev.: 2.22 and 4.59 kW.

Fig. 3 Effect of method to detect occupied/unoccupied mode
transitions. Base: manual selection, variant: automated algo-
rithm. Std dev.: 2.39 kW.
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filter. They are significantly less sensitive to data alignment
choices (up to a 15-min offset) and the use of 60-min interval
data, and almost insensitive to the use of 30-min interval data and
the choice of method to detect occupied/unoccupied mode transi-
tions (at least for simple methods explored within this work).
Based on these results, we can make a number of
recommendations:

(1) Especially in areas with strong microclimates, we recom-
mend either investing in a good source of outdoor air tem-
perature data or acquiring multiple sources of temperature
data and running multiple analyses to gain a sense for
potential differences in shed estimates.

(2) We recommend investing resources into the development
of good algorithms to detect bad data, e.g., power outages.
It may be advantageous to measure power outages directly,
rather than estimating them.

(3) It may be acceptable to use 30- or 60-min interval demand/
temperature data for similar analyses. This could simplify
metering needs and reduce computational burden.

(4) We recommend using automated methods to detect occu-
pied/unoccupied mode transitions as we have shown that
simple heuristic methods can produce very similar results
to manual methods, as shown in Fig. 3.

(5) We recommend aligning demand/temperature data by time
stamp since it is simpler than using a 15-min offset and pro-
duces similar results.

Using different sources of temperature data or different power
outage filters can have significant implications for M&V. For

example, if one was to compute the money a building saves by
participating in a DR program, one could obtain results differing
by hundreds of dollars depending upon which baseline model
implementation choices are made. For example, assume a building
pays 14 ¢/kWh for energy [20]. During PG&E’s CPP high price
period they would pay five times this price, or 70 ¢/kWh. From
Fig. 1, we can find cases in which the two analyses produce shed
estimates that are up to 150 kW different. This results in estimated
savings differences of up to 150 kW� 3 h� 70 ¢/kWh¼ $315.
(The savings are over 3 h because the high price period is 3 h
long, as described in Sec. 2.2.) In Fig. 5, we can find shed estimate
differences even greater than 150 kW when no power outage filter
is used. In DR programs in which buildings are rewarded based
upon the size of their demand shed (which is not the case for
CPP), these baseline model implementation choices would have a
large effect on a building’s financial rewards.

In addition to the implementation differences detailed above, we
also discovered a number of differences between implementations
using different software. We implemented our analyses in both MAT-

LAB and PYTHON and found a number of subtle differences in built-
in algorithms, leading to differences in shed estimates. The differen-
ces in shed estimates were very small so we do not present detailed
results here. However, these differences did make model compari-
son difficult. Here, we describe the sources of these differences so
that other building modelers can learn from our experience.

The first difference was in rounding interpolated values. One
implementation would calculate a value of 0.5 and would round
up, while another would calculate a value of 0.49999… and round
down. While we were not able to discern a significant difference
in shed estimates, this issue made it more difficult to compare in-
termediate results and validate our implementations. We recom-
mend avoiding rounding intermediate results wherever possible. A
second difference was the default methods for calculating data sta-
tistics. For example, the default variance calculations in MATLAB

and PYTHON have different interpretations, as either sample or pop-
ulation variance. It is possible to calculate either value in either
software, but care must be taken to use the functions properly. A
final difference was in the way each software package treated
missing data (i.e., NaNs). MATLAB and PYTHON handle NaNs differ-
ently, and in some cases, it is better to filter NaNs out, rather than
passing them to built-in functions.

5 Conclusion

We have investigated the effect of different baseline modeling
implementation choices on DR performance evaluation. Using the

Fig. 4 Effect of data alignment. Base: 15-min offset, variant:
no offset. Std dev.: 4.59 kW.

Fig. 5 Effect of power outage filter. Base: original filter, var-
iants: no filter and sensitive filter. Std dev.: 30.08 and 18.55 kW

Fig. 6 Box plot of the mismatch in each variant case
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linear regression baseline model in Ref. [14], we explored five dif-
ferent types of baseline modeling implementation choices and
found that DR shed estimates are most sensitive to the choice of
outdoor air temperature data source and data filtration method.
They are less sensitive to data resolution (up to 60-min), data
alignment (up to 15-min offset), and the method to detect transi-
tions between occupied and occupied modes.

While it is known that different baseline models can produce
different shed estimates [10,11], we have shown that the same
baseline model implemented by two different building modelers
can produce different shed estimates if the modelers make differ-
ent baseline model implementation choices. This can result in dif-
ferent interpretations of DR performance, different evaluations of
DR programs, and, in DR programs in which financial compensa-
tion is based upon the magnitude of shed estimates, different
monetary rewards for the participating buildings. Therefore, it is
important to quantify the magnitude of possible differences
resulting from implementation choices and understand the range
of possible interpretations that could result.
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