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Abstract 

 

This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate 

zone  with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. 

This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies 

this procedure to eleven field test buildings. The results of a comparison between the measured demand 

savings during the peak period and the savings predicted by the simulation model indicate that the 

predicted demand shed match well with measured data for the corresponding Auto-Demand Response 

(Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after 

calibrating the initial models with measured data. These improved models can be used to predict load 

reductions for automated demand response events. The simulation results were compared with field test 

data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand 

response strategies worked well for most of the buildings tested in this hot climate zone.  
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1 Introduction 

 

The potential for utilizing building thermal mass for load shifting and peak demand reduction has been 

demonstrated in a number of simulation, laboratory, and field studies. Rabl et al. [1] developed a 

date-based dynamic model to simulate the effect of different thermostat control strategies for reducing 

peak demand. Morris et al. [2] studied two optimal dynamic building control strategies in a representative 

room in a large office building. The experiments showed the reduction in peak cooling load to be as much 

as 40%. Keeney et al. [3] developed a building cooling control strategy and conducted an experiment in a 

large office building. They found the pre-cooling strategy could limit the peak cooling load to 75% of the 

cooling capacity. Xu et al. [4] demonstrated the potential for reducing peak electrical demand in 

moderate-weight commercial buildings by modifying the control of the heating, ventilation and 

air-conditioning (HVAC) system. Field tests showed the chiller power was reduced by 80-100% (1-2.3 

W/ft2) during the peak period without causing thermal comfort complaints. Xu et al. [5] conducted a 

series of field tests in two commercial buildings in Northern California to investigate the effects of 

various pre-cooling and demand shed strategies. Field tests demonstrated the potential to reduce the 

cooling load 25-50% in peak hours and the importance of discharge strategies to avoid rebounds. Braun 

[6] presented an overview of research related to the use of building thermal mass for shifting and reducing 

peak cooling loads in commercial buildings and provided specific results obtained through simulations, 

laboratory tests and field studies. 

Demand response (DR) is a process of managing customer consumption of electricity in response to 

supply conditions to reduce the electricity costs or improve the system reliability. Demand shifting refers 

to a shift in the demand curve, brought about by consuming electricity at a different time to benefit from 

time-of-use rates, which can be achieved by utilizing thermal energy storage such as ice storage or 

building thermal mass. Demand shedding is a temporary reduction of peak electric demand for achieving 

economic savings. N. Motegi et al. [7] provided an introduction to commercial building control strategies 



and techniques for demand response such as control strategies for HVAC, lighting and other 

miscellaneous building end-use systems. This report also summarized information from field 

demonstrations of DR programs in commercial buildings.  

 

This paper describes the development of simulation models for eleven commercial buildings in a hot 

climate zone in California, the use of DRQAT for evaluating DR potential in these buildings, and how to 

optimize DR strategies developed by LBNL. DRQAT is based on EnergyPlus simulations of prototypical 

buildings, developed by J. Huang et al. [8], and HVAC equipment. It incorporates prototypical buildings 

and equipment and allows the user to specify a relatively small number of important parameters in order 

to make a quick assessment of DR strategies that use a building’s thermal mass. This tool was used to 

optimize the temperature control strategies in eleven office buildings located in a hot climate zone in 

California in 2008. Optimal demand response strategies, or those that maximize demand response savings 

for these buildings, were determined through comparison of simulation results of pre-cooling strategies 

with the measured data from the same strategies implemented in the buildings on test event days. Xu et al. 

[9] conducted a series of simulations and strategy analyses by using EnergyPlus to evaluate various 

demand response strategies. The initial models were revised and the parameters were adjusted to ensure 

the hourly simulation profile matched the measured data. 

 

2 Development of Optimal Pre-cooling Strategies 

 

Figure 1 shows the general procedure for developing and calibrating the DRQAT simulation models 

for the field test buildings. All of the models were calibrated with the measured data to meet the 

acceptable tolerance levels developed in ASHRAE Guideline 14 [10]. Based on the calibrated baseline 

models, various demand response strategies were simulated to determine how to discharge thermal mass 

efficiently and smoothly with no rebound in electricity demand. 

 



 

Figure 1 Development and Calibration of the Simulation model by Using DRQAT 

J. Yoon et al. [11] developed a systematic calibration method using a “base load analysis approach” 

that calibrates a building energy performance model with a combination of monthly utility billing data 

and sub-metered data. The results of the case study indicated that the approach provided a reliable and 

accurate simulation of the monthly and annual building energy requirements. Reddy et al. [12, 13] 

proposed a general methodology for calibrating detailed building energy simulation programs based on 

performance data and applied this methodology to three case study office buildings. Pan et al. [14] 

conducted simulation model calibration step by step in a high-rise commercial building based on the 

approach proposed in ASHRAE Guideline 14-2002 [10]. Norford et al. [15] presented a commonsense 

procedure for calibrating a DOE-2 computer model of a commercial building, and identified the major 

building loads in the building including lighting and equipment. The results from the calibrated DRQAT 

simulation models were within the acceptable tolerance levels of the measured data. 

 

2.1 Simulation Model Development 

 

The initial simulation models were developed after completing field data collection. The quantity and 

accuracy of the collected data, such as information about the building envelope, the densities and 

operating schedules of occupancy, lighting and plug loads, HVAC system characteristics, and building 

operation have a direct impact on the accuracy of the simulation results. Therefore, the more abundant 

and accuracy the data, the more accurately the models can predict the peak load reduction.  

 

2.1.1 Inputs for the Initial Simulation Model 

 



Table 1 presents a summary of the building descriptions and the internal loads of the eleven 

commercial buildings. The building audits provided general information, such as number of stories, gross 

area, window-to-wall ratio and other related information. The building orientation, the length, and the 

width of each building were measured with Google Earth, which offers maps and satellite images of the 

buildings. The data collected suggested most of the information related to schedules and demand 

intensities was not available for these facilities and end-use sub-metering data was not available. 

Therefore, the authors used default values for the initial model because the buildings were “typical” office 

buildings. 

Table 1 Initial Simulation Model Input – Building Information 

Site No. 
Gross Area 

(m2) 
Length (m) Width (m) 

Floor 

Height (m) 
WWR_SN WWR_EW 

Building 

Orientation 

#1 6,405.50 91.40 35.10 3.70 0.50 0.50 45 

#2 5,833.70 91.40 32.00 3.70 0.50 0.50 315 

#3 3,605.00 82.30 21.30 3.70 0.50 0.50 45 

#4 6,849.10 62.50 27.40 3.70 0.25 0.25 315 

#5 6,509.00 53.30 30.50 3.70 0.60 0.60 0 

#6 10,470.70 64.00 27.40 3.70 0.60 0.60 0 

#7 7,501.20 76.20 33.50 3.70 0.40 0.40 0 

#8 7,775.00 128.00 30.50 3.70 0.40 0.40 45 

#9 9,707.50 106.70 30.50 3.70 0.40 0.40 45 

#10 11,057.60 61.00 45.70 3.70 0.40 0.40 0 

#11 7,531.80 106.70 35.10 3.70 0.30 0.30 45 

 

Notes 

Floor Height: height of the single floor; 

WWR_SN: window to wall ratio for south and north sides of the building; 

WWR_EW: window to wall ratio for east and west sides of the building; 

Building Orientation: building north axis is specified relative to true north and the value is specified in 

degrees from “true north” (Clockwise is positive). 

 

Internal loads such as occupancy, lighting, and plug loads make up the majority of cooling loads in 

office buildings. Therefore, the densities and operating schedules of the internal loads can significantly 

influence the load profile of the whole building and HVAC system. Where the end-use sub-metering was 

not available for these eleven buildings, the internal occupancy, lighting and equipment was estimated 

based on the characteristics of typical office buildings. Table 2 presents the inputs of building internal 

loads for the initial simulation models and the plug density values for the calibrated model. With the 

information on building type and year of built, the lighting intensity was estimated using California’s 

Energy Efficiency Standards for Residential and Non Residential Buildings [16]. The plug intensity was 

estimated at 8.1 W/m2 (0.75 W/ft2), and occupancy intensity was 36.2 m2 (390 ft2) per person based on the 

characteristics of typical office buildings. The initial schedules for lighting, equipment and people were 

the same as typical operation of commercial buildings benchmark models developed by Torcellini et al. 

[17], as shown in Figure 2 and Figure 3. 

 

 

 

 

 

 



 

Table 2 Initial Simulation Model Input – Internal Loads 

Plug Density (W/m2) 
Site No. Year Constructed 

Lighting Density 

(W/m2) Initial Calibrated 

Occupancy 

(m2/per person) 

#1 1990 17.2 8.1 8.1 36.2 

#2 1988 17.2 8.1 16.1 36.2 

#3 1988 17.2 8.1 16.1 36.2 

#4 1988 17.2 8.1 19.4 36.2 

#5 1993 17.2 8.1 15.1 36.2 

#6 1990 17.2 8.1 9.7 36.2 

#7 2001 12.9 8.1 16.1 36.2 

#8 2003 12.9 8.1 6.5 36.2 

#9 2005 11.8 8.1 15.1 36.2 

#10 2002 12.9 8.1 10.8 36.2 

#11 1994 17.2 8.1 10.8 36.2 

 

 

Figure 2 Initial Schedule of Occupancy on Weekdays 



 

Figure 3 Initial Schedules of Lighting and Plug Power Densities on Weekdays 

Each building has packaged rooftop units with variable-air-volume (VAV) distribution systems. On 

weekdays, the HVAC systems start between 6 am and 8 am, and turn off around 6 pm. The zone 

temperature for each building was monitored and controlled by a fully-equipped digital direct control 

(DDC) system, which enables various global zone temperature reset strategies for demand response 

analysis. The normal zone temperature setpoints were about 25°C (77°F) in the summer period. 

 

2.1.2 Initial Simulation Results 

 

Using the information mentioned above, the initial DRQAT simulation models were developed for 

each building. The initial simulated model was calibrated with measured energy data. For each initial 

simulation model, the absolute and the relative difference between the simulation results and the 

measured data were calculated. The electric consumption predicted by the simulation models was 

compared to the buildings’ monthly utility bills as well as to some spot measurements. The simulation 

results and measured data for each building from the summer of 2007 were compared on both a monthly 

and hourly basis. In order to compare the simulation results and measured data, both graphical methods 

and statistical techniques were applied to determine where the simulation results differed from the 

measured data. Haberl et al. [18] and Kreider et al. [19, 20] used statistical mean bias error (MBE) and 

coefficient of variation of the root mean squared error (CV(RMSE)) to evaluate the accuracy of the 

predicted results of the simulation model. Pan et al. [14] and Yoon et al. [11] also applied the criteria as 

shown in Table 3 into the calibration procedure for energy simulation of commercial buildings. Several 

calibration approaches and guidelines have been developed that use statistical techniques as part of the 

calibration process [10, 21]. Table 3 presents the acceptable tolerance for monthly and hourly data 

calibration according to ASHRAE Guideline 14. The initial models were calibrated to achieve the 

acceptable monthly tolerances based on the required MBE and CV(RSME) then again calibrated based on 

hourly data to achieve a higher level of accuracy. 

Table 3 Acceptable Calibration Tolerances [10] 

Calibration Type Index Acceptable Value 



 ±5% 
Monthly 

 15% 

 ±10% 
Hourly 

 30% 

 

The following criteria were used to assess the difference between the simulation results and the 

measured data. Mean Bias Error (MBE) indicates how well the energy consumption was predicted by the 

model as compared to the measured data. CV(RMSE) was used to determine how well a model matched 

the measured data while accounting for cancellation errors. 

 

Where is the measured electric consumption (kWh) in one month,  is the simulated electric 

consumption (kWh) during the same month, and  is the number of months in the field test period. 

As shown in Figure 4, only two simulation models were within the required ±10% tolerance before 

calibration. The simulated results for the other nine buildings were much higher or lower than the 

measured data, with some monthly MBE and CV(RMSE) values larger than 20%. To ensure the model 

meets the acceptable tolerance and to better understand what was happening in the initial models, 

calibration of each building model’s subsystems wasf required. 

 

Figure 4 Difference of Monthly Electric Usage between Initial Model and Measured Data for 11 Buildings 



2.1.3 Simulation Model Calibration 

 

Based on the whole building calibrated simulation approach developed in ASHRAE Guideline 14, 

attention was focused on the initial models’ most important parameters, such as weather data and internal 

loads (lighting and plug loads). The weather data used in the initial models were TMY2 (Typical 

Meteorological Year) weather files available within DRQAT. Although some modelers have reported 

using typical year weather data for model calibration purposes, this approach was not recommended for 

this project as since the measured data used for the comparison occurred under actual weather conditions. 

During the calibration process, real weather data from 2007 and 2008 (from the EnergyPlus website) was 

applied to the simulation models. 

After comparing the results of the initial simulation models and the measured data, it was determined 

that the plug loads assumed for most of the building models might be set too low, as shown in Table 2. 

The occupancy, lighting and plug load schedules for different weekdays were assumed to be similar to 

each other throughout the year. Therefore, the densities and schedules of lighting and plug loads from the 

whole building electricity data were estimated for the heating period from November 1st 2007 to February 

28th 2008. The cooling plants were completely locked out during cooler weather, or when the maximum 

outside temperature was 12.8°C (55°F) or lower. Thus, the whole building power on these days only 

included lighting, plug and fan power. By analyzing the daily energy use of the building under theses cold 

weather conditions, the internal loads could be separated out from the whole building power. This method 

was applied to buildings where the heating sources were gas, steam, or hot water from other facilities. 

Significant differences were observed in the operation of lighting and plug loads between the initial 

models and real buildings, which led to high MBEs and CV(RMSE) for most of the models. 

As mentioned earlier, Table 2 lists the building internal loads assumed for the initial and calibrated 

simulation models. The lighting and occupancy schedules were the same for both initial and calibrated 

models, while the plug load densities were changed for each building based on the electrical usage 

measured during the cold weather time period.  

Office building #8 offers an example of the model calibration procedure. Site #8 is a typical office 

building: two-story with a large portion of the floor area covered with carpets. Large areas of each façade 

single pane with low-e glazing. The internal equipment and lighting loads were typical for office 

buildings and the occupancy density in the office area was approximately 390-400 ft2 per person. Figure 5 

and Figure 6 show the weekday and weekend/holiday lighting and plug loads schedules after calibration. 

The electric usage was constant during the unoccupied period. The occupancy schedule for the calibrated 

model was the same as that for the initial simulation model. 



 

Figure 5 Calibrated Schedules of Lighting and Plug Densities on Weekdays 

 

Figure 6 Calibrated Schedules of Lighting and Plug Densities on Weekend and Holidays 

 

2.1.4 Calibrated Simulation Models 

 

Figure 7 presents the monthly comparison between the calibrated simulation results and the measured 

data in 2007. The results indicate that monthly simulation results were almost within ±5% of the 

measured data. Some monthly MBEs and CV(RMSE) were higher but still within ±10%. The acceptable 



calibration tolerances were achieved based on the hourly calibration criteria. Generally, the calibrated 

models provided reasonably good predictions of the monthly electrical usage as compared to the 

measurements. With respect to the hourly calibration, the lighting and plug load densities and schedules 

used in the models were constant throughout the year. In reality, they may vary slightly from day-to-day. 

Figure 8 compares the simulated and measured whole building electrical demand for building #8 on 

weekdays from August 20th to 24th. As shown in Figure 8, the simulated interval electrical demand and 

the measured data agree pretty well despite the discrepancy between the simulation model and actual 

operation. Interval errors between the simulated results of the calibrated model were typically within 

±15%. Therefore, the calibrated model was deemed acceptable for evaluating the impact of various 

pre-cooling and temperature reset strategies. 

 

Figure 7 Difference of Monthly Electric Usage between Calibrated Model and Measured Data for Field Test 

Buildings 



 

Figure 8 Comparison of Electrical Demand between Calibrated Model and Measured Data 

 

2.2 Optimization of Pre-cooling Strategies 

 

Calibrated models were used to investigate and analyze various pre-cooling strategies. The pre-cooling 

and zone temperature reset strategies that have been examined in this study are shown in Figure 9. 

According to the trended operation data, each of these buildings were normally operated at constant 

setpoints around 25°C (77°F) throughout the warm-up and occupied hours. After 6 pm, the system was 

shut off and zone temperatures started to float. The setpoints in individual zones ranged from 23.9°C 

(75°F) to 26.7°C (80°F), with an average value of about 25°C (77°F). 

The first strategy was termed as “pre-cooling with linear temp reset”. From 5 am to 12 pm, mostly 

during occupied hours, all of the zone temperature setpoints were reduced to 23.9°C (75°F). From 12 pm 

to 6 pm, the high price periods, the setpoints were raised linearly to 26.7°C (80°F). After 6 pm, before the 

system was shut off, the setpoints were rolled back to 25°C (77°F).  

The second strategy was termed as “pre-cooling with exponential temp reset”. While the pre-cooling 

period was same as the first strategy, the temperatures were raised up exponentially rather than linearly in 

the afternoon period.  

The third strategy was called “no pre-cooling with exponential temp reset”. The zone temperatures 

were raised exponentially in the afternoon in the same way as in the last strategy, but without pre-cooling 

from 5 am to 12 pm. One aim of the tests was to determine the effect of the pre-cooling on peak demand 

shedding. 

The fourth strategy was called “pre-cooling with step temp reset”. The zone temperature setpoints 

were reduced to 23.9°C (75°F) from 5 am to 12 pm. The setpoints were raised to 26.1°C (79°F) at 12 pm 

and remained there until 3 pm. At 3 pm, the zone temperature setpoints were reset at 26.7°C (80°F) and 

remained there for the duration of the afternoon. 



 

Figure 9 Pre-cooling and Zonal Temperature Reset Strategies 

A series of simulations for each of the four pre-cooling strategies was conducted for each building. 

Simulation results were compared with measured data. Figure 10 shows the simulation results for one 

office building. The plot illustrates the demand shed for different types of pre-cooling strategies during 

the high price period. The “Pre-cooling with step temp set up” strategy load profile was much flatter than 

others, and the “Pre-cooling with exponential temp set up” strategy load profile was also better than the 

“No pre-cooling with exponential temp set up” and “Pre-cooling with linear temp set up” strategies’ load 

profiles. The “Pre-cooling with step temp set up” strategy could discharge the thermal mass more 

smoothly and create a flat power profile during the peak period. The “Pre-cooling with linear temp set up” 

strategy load profile fluctuated throughout the temperature reset period and the shed was smaller than that 

of “exponential set up” and “step set up” strategies. 



 

Figure 10 Simulation Results of Proposed Pre-cooling Strategies 

 

3 Pre-cooling Field Test Analysis 

 

In summer 2008, the optimal pre-cooling strategy was implemented in each building using a signal 

initiated by the automated demand response (Auto-DR) system, which eliminates the need for human 

intervention in each field test building. Auto-DR can be defined as fully-automated DR initiated by a 

signal from a utility or other appropriate entity that provides fully-automated connectivity to customer 

end-use control strategies [22, 23]. It allows greater levels of participation and improved reliability and 

repeatability of the demand response and customer facilities [24]. A recently published specification  

describes  an  open  standards based  communications  data  model  designed  to  promote  

common  information  exchange  between  the  utility  or  Independent  System  Operator  

and  electric  customers  using  demand  response  price  and  reliability  signals [25]. In this 

study, field tests of optimal pre-cooling strategies using the Auto-DR system were conducted on all 

twelve DR events from July to September. Figure 11 shows the pre-cooling strategy used on the Auto-DR 

event days for each of the buildings. 



 

Figure 11 Pre-cooling Strategies on Auto-DR Test Days 

 

3.1 Baseline Model Confirmation 

 

In the 2003 and 2004 studies, a strong correlation between maximum outside air temperature and 

whole building peak power was observed [4]. In order to minimize the weather difference between 

simulations and test days, baseline days for each test day were selected based on similarity of peak 

outside air temperatures, and profiles of the outside temperatures.  

Simply comparing maximum outside air temperature was not a reliable method to select baselines. 

The average variance of hourly outside air temperatures (AVHOAT) between the baseline days and test 

days provides an additional metric defined as: 

 
Where Bi is the hourly outside air temperature of baseline days and Ti is the hourly outside air 

temperature of Auto-DR test days. 

Table 4 presents five potential baseline days that had similar maximum outside air temperature to that 

of the 9/3/2008 test day. By only comparing the Peak OA Temperature, any of these five baseline days 

could be considered to be the best baseline day. The AVHOAT method, however, shows that 9/4/2008 

had the smallest AVHOAT and the hourly outside air temperature on baseline days were almost the same 

as that on the Auto-DR event day – thus 9/4/2008 would be the best match to use for the baseline day. 

This same AVHOAT method was used to select the best baseline days for the other test event days.  

Table 4 OA Temperature Comparison between Baseline Days and Auto-DR Test Days 

Index Test Day Baseline Days 

Date 9/3/08 9/2/08 9/4/08 9/5/08 9/15/08 9/25/08 

Peak OA temperature (°C) 36.7 37.2 36.1 37.8 37.2 36.7 

AVHOAT (°C) - 1.65 0.53 0.55 2.42 1.50 

 

LBNL developed a baseline model to estimate the demand savings from implementing the DR 

strategies. Previous research recommended a weather-sensitive baseline model with adjustments for 



morning load variations. With respect to the LBNL baseline model, the whole building power baseline 

was estimated using a regression model that assumes that whole building power was linearly correlated 

with outside air temperature (OAT) [26]. Each of these two baselines were applied to evaluate the effect 

of demand response strategies for decreasing the peak demand. 

In general, the baseline models for each Auto-DR event day were achieved based on similarity of the 

peak and hourly outside air temperature between the baseline days and the Auto-DR event days and with 

the assumption of similar internal operating loads such as lighting and plug loads. However, some 

buildings were not very sensitive to outside weather conditions; rather, lighting and plug loads account 

for the majority of electricity usage – these loads significantly influenced the whole building power 

profile. Under this condition, a combination of end-use submetering and weather condition sensitivity 

analysis was recommended to find suitable baseline days for each Auto-DR event day. 

 

3.2 Field Test Results 

 

Figure 12 shows the whole building power for the 9/3/2008 Auto-DR event days as well as the 

corresponding 9/4/2008 baselines from the (AVHOAT) and LBNL baseline models. As shown in Figure 

12, there was little difference between these two baseline models due to the high similarity between the 

selected baseline day and the Auto-DR day. 

 

Figure 12 Field Test Results of Pre-cooling Strategies on One Auto-DR Test Day 

The field test results in Figure 12 show significant peak demand savings for the “Pre-cooling with step 

set up” strategy throughout the Auto-DR event days in the office building (#8). Note that the load shifted 

from the afternoon peak period to the morning off-peak period (pre-cooling period). By operating the 

optimal pre-cooling strategy as shown in Figure 11, the average peak demand saving was about 18% of 

the whole facility load based on the six-hour peak period, and the peak demand was reduced by as much 

as 23%. Meanwhile, the demand curve during the peak period was controlled at a nearly constant value; 

no rebounds were observed for the electrical demand of the HVAC system. The trend data indicated that 

the temperature had not reached the 26.7°C (80°F) setpoint at the end of the HVAC system operation, due 

to the discharged cooling energy from building thermal mass. If the thermal mass had been fully 



discharged during the peak period, the HVAC system would have had to provide more cooling to keep the 

building at the setpoints – thus resulting in higher demand. As this building had sufficient thermal mass to 

carry the building at the experimental setpoints, the peak period zone temperature setpoints could have 

been reset higher to take full advantage of the building’s thermal mass. 

 

3.3 Comparison of Measured Data and Simulation Predictions 

 

Figure 13 compares the measured data to the simulation results. Depending on the test day, the 

average demand shift predicted by the simulation models was slightly higher or lower than the measured 

data. Among the DRQAT inputs, level of thermal mass had the largest impact on peak demand reductions. 

The building thermal mass level was set to “Medium” in the first calibrated models, which was confirmed 

according to the characteristics of typical office buildings [17]. The survey data did not provide enough 

information to quantify thermal mass. The thermal mass level was generally reset to match actual 

conditions in the individual buildings based on the building’s structure survey data. In the future, the 

building thermal capacity can be estimated by several models developed by J.E. Braun and k-H Lee [6, 27, 

28] through short-term measurement and field surveys. 

In Figure 13, during the peak period, with the exception of buildings #4 and #6, simulated demand 

savings agree well with those of the measured data. To determine the cause for inconsistency in office 

building #4’s results, a detailed analysis of the actual whole building electric load profile was conducted 

for the Auto-DR test days. By comparing the on Auto-DR test days’ whole building power profiles with 

the baseline days’ profiles, the results in Figure 14indicated that the pre-cooling with zone temperature 

reset strategy did not work on the Auto-DR test days, as there were some implementation problems. There 

was no trend to achieve demand shed when Auto-DR signal was activated. It was verified that this 

building didn’t participated in the Auto-DR program during the summer 2008. Office building #6’s 

measured average demand savings were higher than those of the simulation model. This discrepancy may 

have been due to the chiller staging control with the operation of zone temperature reset during the peak 

period. As shown in Figure 15, the whole building power profile fluctuated throughout the peak period, 

while the simulated power profile during the peak hours was flat. Though significant average demand 

savings were achieved, the peak demand was even higher than normal operation without the demand 

response strategy. 

The optimal pre-cooling strategy worked well in the other office buildings and was able to reduce the 

peak electric demand significantly. As shown in Figure 12, the whole building power (WBP) profiles on 

the Auto-DR test days indicted no rebound in the afternoon. Table 5 presents a summary of measured and 

simulated demand savings for all eleven test buildings – the electrical demand during the peak period was 

reduced by 15~30% on the Auto-DR event days. The pre-cooling with zone temperature step reset 

strategy was successful in decreasing the peak demand of the whole building, thus providing significant 

energy cost savings. The comparison results indicate that the calibrated models can be used to predict the 

demand savings from other demand response strategies.  



 

Figure 13 Comparison of Measured and Simulated Average Demand Savings for Field Test Buildings 

 

Figure 14 Comparison of the Three Auto-DR Test days’ Whole Building Power Profiles and the Baseline’s 

Profiles 



 

Figure 15 Discrepancy between Measured and Simulated Demand Savings in Site #6 

Table 5 Summary of Measured and Simulated Demand Savings for Field Test Buildings 

kW W/m2 WBP% 
Site No. Demand Savings 

Max Ave Max Ave Max Ave 

Measured 43.5 30.0 6.8 4.7 17% 12% 
#1 

Simulated 62.2 36.7 9.7 5.7 23% 13% 

Measured 61.9 24.6 10.6 4.2 17% 7% 
#2 

Simulated 64.8 36.1 11.1 6.2 20% 11% 

Measured 63.5 23.5 8.2 3.0 30% 11% 
#3 

Simulated 54.1 24.6 15.1 6.8 24% 11% 

Measured 31.0 16.4 4.0 2.2 7% 4% 
#4 

Simulated 100.3 48.0 14.6 7.0 22% 10% 

Measured 56.9 26.8 7.3 3.5 17% 8% 
#5 

Simulated 62.6 31.2 9.6 4.8 16% 8% 

Measured 234.2 94.2 30.1 12.2 46% 18% 
#6 

Simulated 77.5 37.1 7.4 3.6 13% 6% 

Measured 101.0 42.1 13.0 5.4 26% 11% 
#7 

Simulated 85.4 47.8 11.4 6.4 23% 13% 

Measured 74.4 55.1 9.6 7.1 27% 20% 
#8 

Simulated 80.7 48.9 10.4 6.2 26% 16% 

#9 Measured 74.5 51.9 9.6 6.7 16% 11% 



 Simulated 105.5 60.2 10.9 6.2 23% 13% 

Measured 130.1 88.6 16.7 11.4 27% 18% 
#10 

Simulated 139.7 88.2 12.6 8.0 31% 20% 

Measured 115.5 66.1 14.9 8.5 25% 14% 
#11 

Simulated 90.1 58.8 12.0 7.8 25% 16% 

 

4 Guidelines to Develop and Calibrate DRQAT Model 

 

Through this study, this experience with simulation-based DR optimization was summarized in a 

procedure to develop and calibrate DRQAT building models with the following steps: 

• Generate a DRQAT initial simulation model with basic building information; 

• Replace TMY weather file in DRQAT and regenerate an EPW EnergyPlus file with real 

weather data collected from the site or the nearby weather stations; 

• Use whole building power under extreme cold weather conditions to estimate the actual 

lighting and equipment end use load profiles. The method will not work if electricity or heat 

pumps were used as heating sources; 

• Run simulations and compare the simulated results with the measured data; 

• Readjust the internal load schedule until the simulated monthly and hourly demand data match 

with the measured data. 

 

5 Conclusions and Recommendations for Future Work 

 

This paper evaluated how to optimize and verify pre-cooling strategies for office buildings in a hot 

climate zone with the assistance of the Demand Response Quick Assessment Tool (DRQAT) - a building 

energy simulation tool. The simulation results from calibrated simulation models matched well with the 

actual monthly and hourly data. Using the calibrated simulation models, a series of simulations were 

conducted to determine optimal pre-cooling strategies for the eleven buildings. “Pre-cooling with 

exponential temp set up” and “Pre-cooling with step temp set up” strategies turned out to be better DR 

strategies compared to the “Pre-cooling with linear temp set up” strategy.  

The field test results indicated that the pre-cooling strategies were able to reduce the peak demand as 

expected on Auto-DR event days. For all test buildings, the electrical demand during the peak period was 

reduced by 15~30% on the Auto-DR event days. 

The demand shed predicted by DRQAT matched well with the measured data on Auto-DR event days. 

The study showed that after refining and calibrating the initial simulation models based on measured data, 

the accuracy of the models was greatly improved and the models could be used to reliably predict load 

reductions in most of buildings on DR event days within ±10%. Although agreement was found between 

the carefully calibrated baseline model and the measured interval meter data, efforts in the following areas 

can further improve the accuracy of the simulations and usefulness of the DRQAT tool: measured or real 

weather data, sub-metered HVAC and whole building power, and better estimation of building internal 

mass. This study confirms that sub-metered HVAC and whole building power data were crucial to the 

accuracy of the models. If this data is not available, the auditor may conduct a manual test on a weekend 

to measure end use consumption and demand indirectly. It was difficult to assess the building’s thermal 

mass level. It would be useful to conduct short-term measurements and field investigations to determine 

the capacity of the building’s thermal mass and incorporate these mass models [6, 29] into the simulation 

model. 
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